

Top Ways to Boost Capacity with Better Data Center Power and Networking Management

Justin Capone Sunbird Software Sales Engineer

Maintain High Availability with the Least Resources

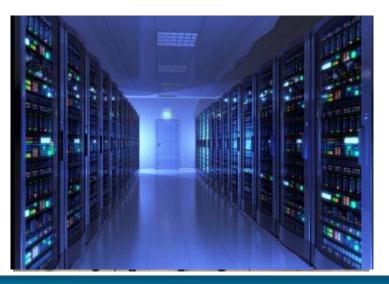
Networking Hero Mode

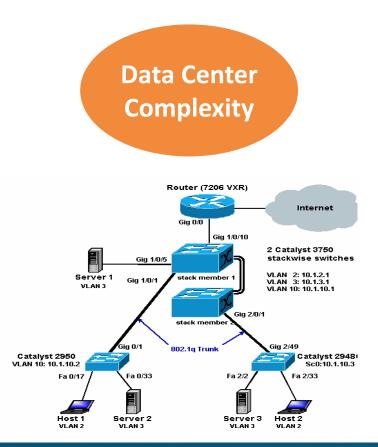
Legacy Tools

- Spreadsheets
- 2D Drawings

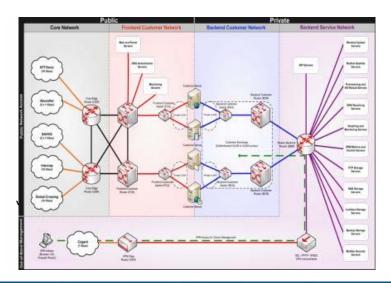
Manual Effort

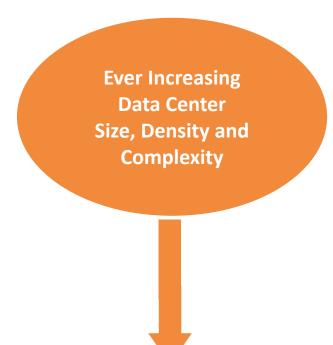
- Walk the floor
- Trace cables



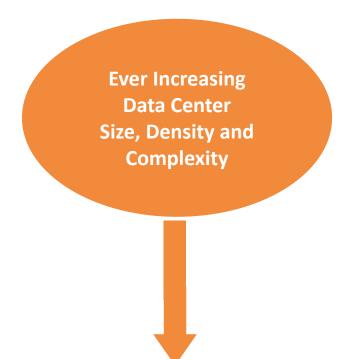


- Explosion in demand for data center hosted service
- Data center consolidations
- Virtualization initiatives





- Complex computing
- More dynamic environment
- Do more with less



Hero Mode Cannot Keep Up!

Need A New Way Forward

Second Gen DCIM

Super-Fast Deployment Time

BICSI FALL Conference & Exhibition

Complete Suite of Capabilities

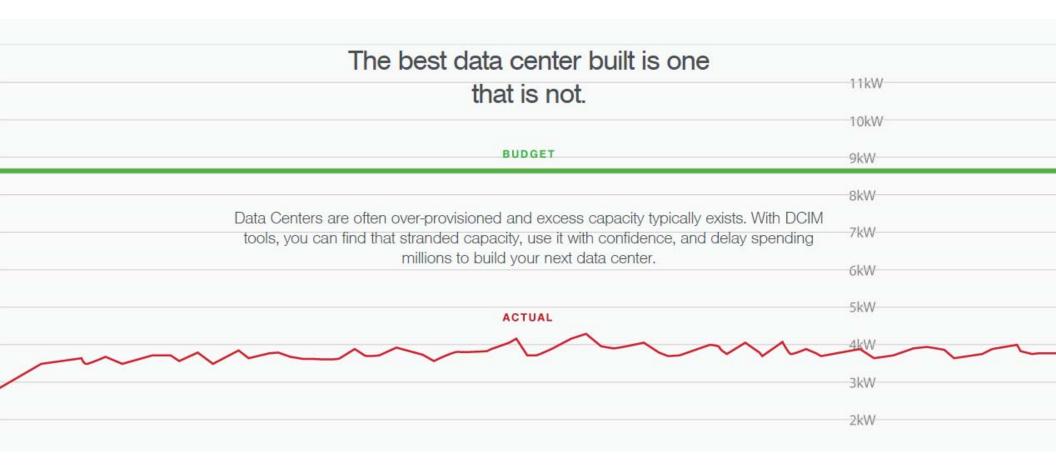
Zero-Configuration Analytics

Automation Via Integration

Compatibility with What You Have

Extreme Scalability

Ease of Use



Data-Driven Collaboration

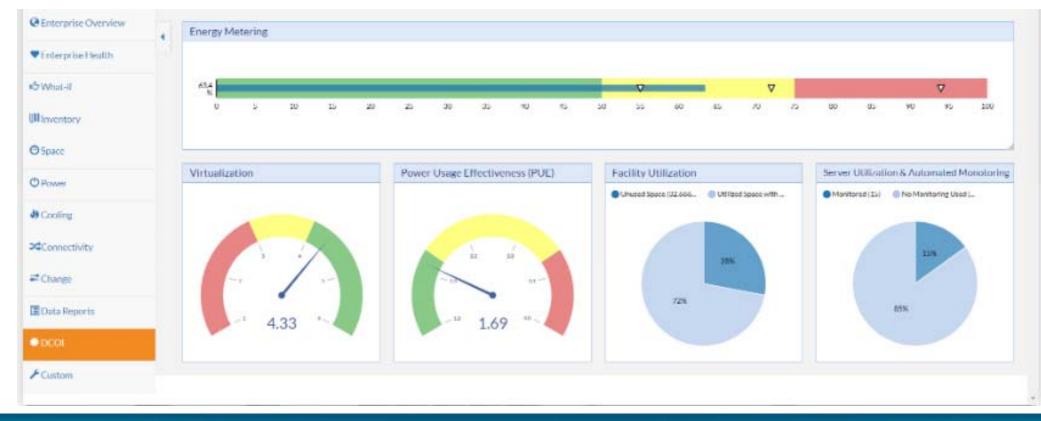
AI and Machine Learning

Do you know how much power capacity you have?

- Power consumption gauge
- Power capacity forecast trend
- Trending load by data center, room, rack, or customer

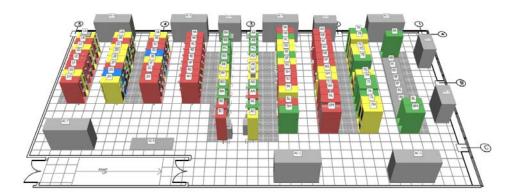
Real-Time Visibility for Better, Faster Decisions

Forecast Capacity with Real-Time Resource Management


Look into the future to plan adds, decommissions, and other changes that impact your data center capacity:

- View available and in-use resources based on a date for just-in-time capacity management, including assets that are planned to be decommissioned
- Plan and reserve capacity that will become available later, even if that capacity is currently used for other projects
- Use what-if analyses to determine the impact of changes to your data center before they happen and without impacting your current equipment
- Leverage real-time data to forecast remaining "days of capacity" left so you'll know when you need to purchase more—before you run out of capacity

US Government Data Center Optimization Initiative

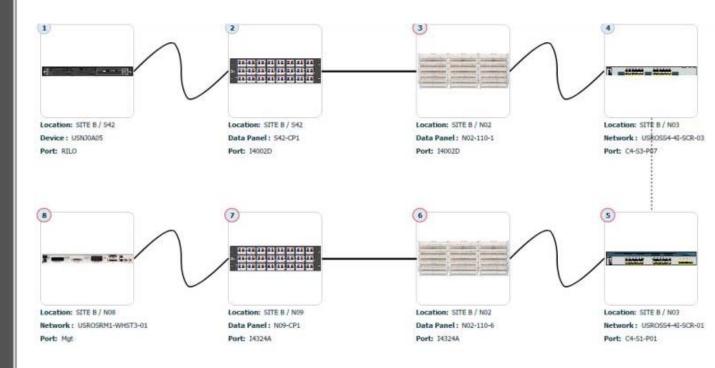


Visualize Your Capacity

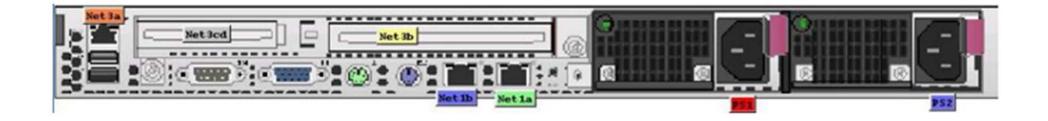
- Corollate available resources for:
 - Space
 - Power
 - Cooling
 - Data Ports
 - Structured Cabling

Available RUs	- s	> 20	
Temperature (Fro	nt) * 72.5	- 80.5	
Measured Amps	< 27.6	2 54.5	
Edit Thresho	old		
C Get Reading	Updated: 08/20/20	19 at 04:57:12 PM	
Cabinet -	Available RUs -	Measured Amps -	•
LARRY	• 37	@ N/A	4
14	• 9	e 10	e
18	• 1	e 12	٠
10	9 8	e 15	٠
10	• 1	e 12	٠
16	• 1	• 18	•
1F	• 1	• 12	٠
16	<u>6</u>	• 10	٠
18	• 2	e 11	٠
ZA	• 12	• 15	٠
28	<mark>e</mark> 12	• 13	۰.
2C	. 6	• 15	٠
20	0.0	e 17	۰.
26	<mark>e</mark> 19	• 12	۰.
2F	• 2	• 16	
ZĠ	• 21	• 11	
	- 19	• 13	

Reports Legend and Data



Full Network Connectivity Management


- View Network relationships quickly and easily to trace for trouble shooting and audit purposes
- Automatic validation

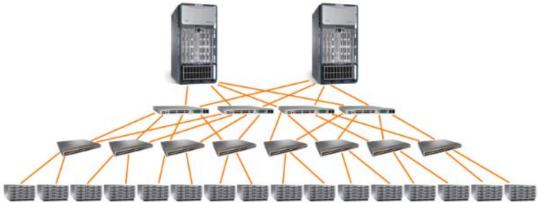
Network Interface Card Connector, Media, Color Code & Protocol and Data Rate

The Compute Device

Network Connectivity Points

Switch

Patch Panel

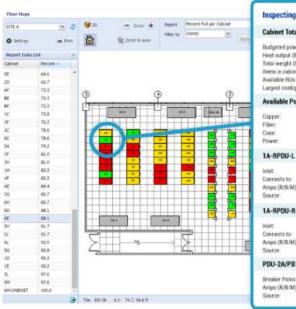


Increase Utilization of Existing Data Ports

Visualize All Your Network & Data Circuits

From end to end, document and understand every node in your data circuits to identify single points of failure and decrease troubleshooting time.

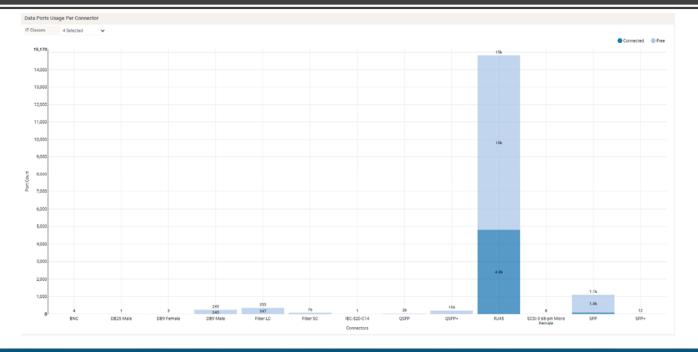
- Server with Copper or Fiber Data Connection
- Edge Switching (e.g., Top of Rack/End of Row)
- Core Routing or Switching Equipment
- Patch Panels
- Multiplexing Equipment
- Demarcation Points
- Carrier Wide Area Network
- Even KVM and Serial Console Ports & Connectivity



View Port-Level Capacity at Every Rack

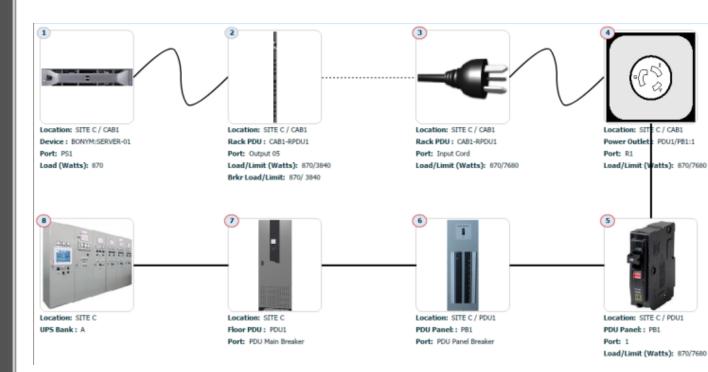
Drill down from the data center health floor map and instantly get a realtime view of granular rack capacity, down to the port level.

\oslash	Available space	\oslash	Potential power
\bigcirc	Budgeted power	\oslash	Copper, fiber and power ports
\oslash	Weight	\oslash	Number of items in cabinet
\oslash	Available RUs	\oslash	Largest number of contiguous RUs

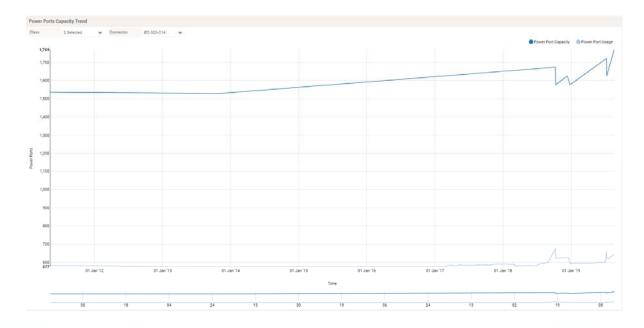


ting TA	24
t Totals	
d power (W): tput (BHL/hr): spht (ba): cabinet: e RUs: contiguous RUs:	4.260 14.535 804 39 38 of 42 2
le Ports	
	0 of 43
	32 af 51
DU-L	
s to: //B/M).	Input Cord POU-2A/FB1:1,3:Socket1 16/33/9 A
DU-R	
n to: //B/M)	Input Cord POU-28:F81:1,3 Socket1 16/33/9 B
A/PB1:43:Soc	ket1
Poles: //B/M):	1 4/7/0 PB1

Track Data Port Capacity and Usage



Full Power Connectivity Management


- View power chain quickly and easily to trace for trouble shooting and audit purposes
- Automatic validation

Power Port Trends

Power Connectivity Points

Rack iPDU – Inlet, Line and Circuit Breakers

Inlet Readings							
PDU Element	Voltage (V)	Current (A)	Active Power (W)	Apparent Power (Power Factor	Active Energy (Wh)	
Inlet 1	214	1.3	404	466	0.87	4,121,340	
Line Readings							
PDU Element		Va	oltage (V)	Current (A) U	Inutilized Capacity (A)	
🗉 Inlet 1							
L1			214	1	.3	22.7	
L2			214	1	.1	22.	
L3			216	216 1.3		22.7	
Circuit Breaker Rea	dings						
Circuit Breaker				Current (A) Unutil		Jnutilized Capacity (A	
Circuit Breaker 1 (C1)		0.7					
Circuit Breaker 2 (C2)				0.6		19	
Circuit Breaker 3 (C3)		0.9			19.1		

Power Connectivity Points

Rack iPDU – Outlets

8	Pow	ver Control •						
	#	Outlet	IT Device	Active Power	Apparent Pow	Voltage (V)	Current (A)	Unutilized Ca
	1	HP DL140.122	HP DL140.122	112	122	120	1.025	10.975
	2	DRAC 860.120	DRAC 860.120	89	93	120	0.776	11.224
	3	Win XP.122	Win XP.122	82	85	120	0.719	<mark>11.281</mark>
-	4	Windows XP.122	Windows XP.122	107	112	120	0.926	11.074
	5	Linux.122	Linux.122	102	107	120	0.903	11.097
	6	Cisco 2500.122	Cisco 2500.122	19	30	<mark>118</mark>	0.261	11.739
	7	Vista.122	Vista.122	89	89	118	0.756	11.244
	8	Win2K.122	Win2K.122	78	82	118	0.701	11.299

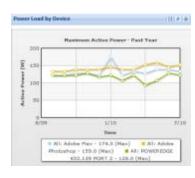
Power Connectivity Points

PDU – Power Panel

1,3	30 A, 208 V	At Cabinet 2A	At Cabinet 2B	30 A, 208 V	2,4
5,7	30 A, 208 V	E ACCADINECZO	At Cabinet 2D	30 A, 208 V	6,8
9,11	30 A, 208 V	At Cabinet 2E	At Cabinet 2F	30 A, 208 V	10,12
13,15	30 A, 208 V	At Cabinet 2G	At Cabinet 2H	30 A, 208 V	14,16
17,19	30 A, 208 V	At Cabinet 4D	At Cabinet 4E	30 A, 208 V	18,20
21,23	30 A, 208 V	At Cabinet 4E	At Cabinet BF	30 A, 208 V	22,24
25,27	30 A, 208 V	T HAR CADIDER BK	At Cabinet AA	30 A, 208 V	26,28
29,31	30 A, 208 V	AL CODINEL AD	At Cabinet AC	30 A, 208 V	30,32
33,35	30 A, 208 V	At Cabinet AD		50 A, 208 V	34,36,38
37	- 20 A, 120 V	-		-	
39	= 20 A, 120 V		3 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	v 0 v -	40
41	- 20 A, 120 V		At Cabinet AH 🗕 📕	20 A, 120 V	42

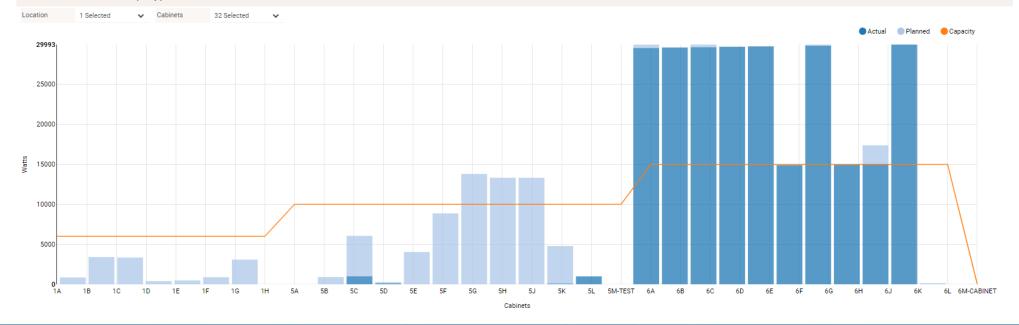
Downstream Power Sum -

Phase 🗨 Volts		Namep Power (kW)	late Sum Current (Amps)	Power (kVA)	udget Su Power (kW)	um Current (Amps)	Measured* Current (Amps)
Α	208	2.49	23.96	1.25	1.25	11.98	0.00
В	208	2.49	23.96	1.25	1.25	11.98	0.00
С							0.00
Totals		4.98	23.96	2.49	2.49	11.98	0.00


* From colocted Made

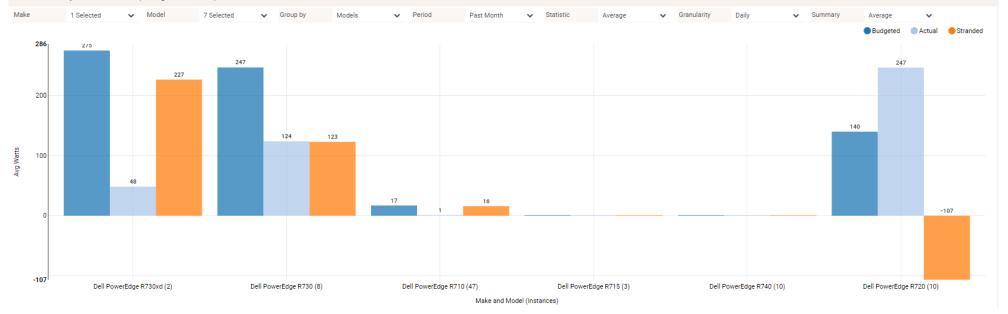
Power Chain Management to Maximize Resources

Nameplate = 500W Budget = 400W Actual Load = 300W Saving = 25%

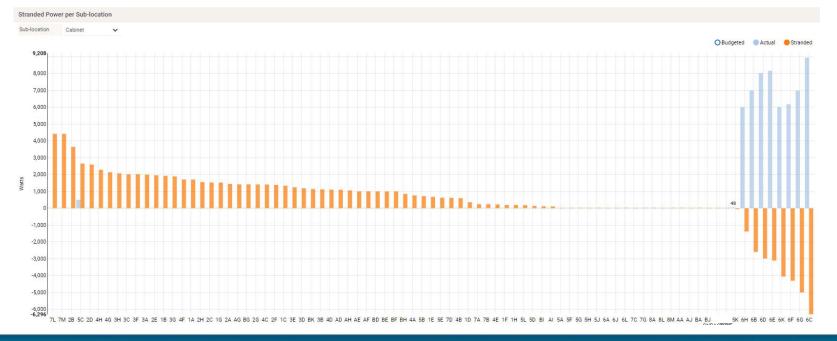

 Monitoring Maximum Load Under Compute Stress over Long Period of Time

Track Cabinet Power Utilization

Actual and Planned Power vs. Capacity per Cabinet



Track Stranded Power Per Model

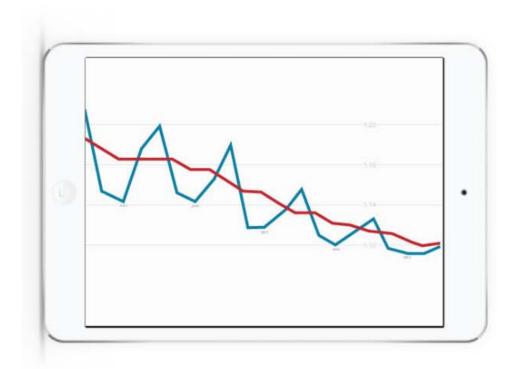

Stranded Power per Model Instance (Average of Instances)

How to Eliminate Stranded Power

Allocate accurate costs across organizations

Drive energy efficient behavior

Don't overcharge or get over-charged


Recover lost allocated charges

Charge Back to Drive Efficient Use of Capacity

Power Usage Effectiveness

Real-time PUE is now at your fingertips. **It's automatic**

- Automatically collect data from Building feeds, IT loads, and non-IT loads
- Automatically calculate and trend PUE in all data centers across the world
- Immediately see the impact of energy efficiency initiatives
- Compare your PUE Year over Year and with industry peers

Benefits

- Reduce and/or Defer Capital Expenses
 - Maximize utilization of existing resources through better capacity planning
 - Increase utilization of power systems by better balancing of 3phase power
 - Identify unused structured cabling to defer need to install new cable runs

Thank You

