Curing Common AV Headaches

Providing systems that will get used and make everyone happy BUDGET CONSCIOUS | EASY TO USE | FUTURE PROOF | NEXT GENERATION | PROTECT YOUR REPUTATION

Common AV Headaches

Headache	Prescription
Accommodating odd room sizes	Adding displays and speaker placement
New AV technologies not supported by old AV cabling	HDBaseT extension on Category cable
Hard to share content/collaborate	Auto and manual input switchers
Video looks great, audio sounds terrible	Audio extraction, amps and speakers
Grounding and bonding of shielded cable	UTP cable with crosstalk prevention tech

Accommodating Odd Room Sizes

Adding displays
Display or projector placement and size

Accommodating Odd Room Sizes

- Every room presents a different challenge
- The audio element is just as important as the video element
- Consider the viewer experience but also consider the presenter
- Maintain the focal point and purpose

Accommodating Odd Room Sizes

Fixing the Bowling Alley

Flat screen displays (Qty 2 or 4)

HDMI splitters
(Qty 1 or 2)
HDBaseT Extension
(Qty 1 or 2)
HDMI cables
(Qty 5 or 6)

Maintain the focus at the presenter | Provide detail for every participant

Fixing the Bowling Alley

Accommodating Odd Room Sizes

Fixing the Training Room

A. Flat screen displays (Qty 2)
B. HDMI splitter (Qty 1)
C. HDMI cables (Qty 2 or 3)

Clear the view for all participants and provide sharp detail

Maintain focus on the presenter

Fixing the Training Room

Choosing the Correct Screen Size

Where will the viewers sit?

- Maximum viewing distance
- Maximum viewing angle
- Make sure the viewing angle of the viewer falls within the viewing angle of the display or projection screen

What will the viewers do?

- Critical - detailed engineering drawings or spreadsheets
- Reading - presentation slides
- General - training videos or movies

Screen Size and Aspect Ratio

- 4/6/8 Rule of Thumb
- Critical : Min. Screen Height x $4=$ Max. Viewing Distance
- Reading: Min. Screen Height x $6=$ Max. Viewing Distance
- General : Min. Screen Height x $8=$ Max. Viewing Distance
- Aspect Ratio (AR) is the ratio of width (W) to height (H)
- NTSC:

$$
4 / 3=1.33
$$

- HDTV:
$16 / 9=1.78$
- Cinemascope:
$2.35 / 1=2.35$

Find the missing screen size!

1. Solve for Screen Height
2. Calculate Width
3. Determine Diagonal Size

Solving for Display or Screen Size

1. We start with max distance

$$
20^{\prime}=240^{\prime \prime}
$$

2. Solve for required height using the

$4 / 6 / 8$ Rule of Thumb ($\mathrm{H} \times(4,6$, or 8$)=$ Max Distance)

- $H=$ Max Distance $/(4,6$, or 8$) \quad 240^{\prime \prime} \div 6=40^{\prime \prime}$

3. Solve for the width using the aspect ratio ($\mathrm{W} / \mathrm{H}=\mathrm{AR}$), in most cases HDTV (16 / $9=1.78$)

- $W=H \times A R$

$$
40^{\prime \prime} \times 1.78=71.2^{\prime \prime}
$$

4. Use Pythagorean Theorem ($\mathrm{H}^{2}+\mathrm{W}^{2}=\mathrm{D}^{2}$) to solve for the diagonal size (D)

- $D=\sqrt{\left(H^{2}+W^{2}\right)}$

$$
\sqrt{(71.2)^{2}+(40)^{2}} \approx 82^{\prime \prime}
$$

Classroom Example

- Students in the back row are 24 feet from the screen
- They will be looking at slide presentations
- The client plans on an HDTV format display

Classroom Example

1. Use $6 \times$ Rule of Thumb for Reading to get recommended screen height (Max Distance / $6=\mathrm{H}$)
a) Find the Height $24^{\prime} / 6=4^{\prime} \mathrm{H}$
b) Find the Width for HDTV
$4^{\prime} \mathrm{H} \times 1.78 \mathrm{AR}=7.12^{\prime} \mathrm{W}$

2. Find the diagonal using the Pythagorean Theorem $\sqrt{\left(H^{2}+W^{2}\right)}$
a) $\sqrt{\left(4^{2}+7.12^{2}\right)}=\sqrt{(16+50.7)}=\sqrt{(66.7)}=8.17^{\prime}$
b) Convert feet to inches by multiplying by 12
$8.17^{\prime} \times 12=98$ inches
7.12'

We need a display or projector screen of at least 98" diagonal

Thank Goodness for the Internet

1. Max Viewing Distance $=24^{\prime}$
2. Min Screen Height

- $24^{\prime} / 6=4^{\prime}\left(48^{\prime \prime}\right)$

3. Aspect Ratio $=1.78$
4. Screen Width

- $4^{\prime} \times 1.78=7.12^{\prime}\left(85.5^{\prime \prime}\right)$

5. Internet Search
"Pythagorean Theorem calculator"
Min display size 98" diagonal
```
Pythagorean Theorem
```

Solve for hypotenuse -
$c=\sqrt{a^{2}+b^{2}}$
a Leg Enter value
b Leg
Enter value
Pythagorean Theorem
Solve for hypotenuse -
$c \approx 98.05$
a Leg
b Leg

Pythagorean Theorem
Solve for hypotenuse -
$c \approx 98.05$
a Leg
b Leg

New AV Technologies Not Supported by Old AV Cabling

Moving on from VGA
Passive HDMI cables are not enough
HDMI extension - plug and play

Video Extension Options

- Why are HDMI Cords not enough?
- Distance
- Retrofit
- What solutions are available that require an AV staff to support?
- Traditional distribution amplifiers and matrix switches
- What solutions are available that the IT team can support?
- Video over Ethernet/IP
- Wi-Fi
- What if there is no AV or IT staff to support?
- Dependable plug-and-play solutions

Moving from a VGA to HDMI Projector

- $1 / 2^{\prime \prime}$ conduit in the wall
- VGA cable (field terminated)
- But, the HDMI cable connector is huge
- At least 7/8" diagonal
- Oh oh!

HDBaseT - More than Just Video and Audio

Moving from VGA to HDMI Projector

- $1 / 2^{\prime \prime}$ conduit in the wall
- Not a problem for Cat 6A cable
- But remember the properties of HDBaseT
- Like 10GBaseT
- Alien crosstalk

Moving from VGA to HDMI Projector

- HDMI Cable
- Category Cable

Moving from VGA to HDMI Projector

If you still have VGA devices - no problem - use an HDBaseT transmitter with built-in VGA to HDMI scaler

- HDMI Cable
- Category Cable
- VGA + Audio Cable

The Distance Headache - HDMI Cables

- When the source is right next to display? All is good!

- When the source is remote from the display? Not so good!

Max recommended HDMI cable length for dependable performance is $15^{\prime}(5 \mathrm{~m})$ at 1080 p

The Distance Headache - Cured!

- 100m HDBaseT Extender Solution - Leviton 41920-HTE
- Single Cat 6A UTP cable
- Powered from either end (PoH)

Hard to Share Content / Collaborate

Multiple input switching

Collaboration and Huddle Spaces

- Popularity of impromptu meeting spaces and remote collaboration
- Attempting to share wirelessly or connecting directly to the display
- Security concerns for both
the network and guest devices

Automatic Sharing (Switching)

Controlled Sharing (Switching)

Controlled Sharing (Switching)

Bicsi

Display Sharing - 4 Input Sources

Video Looks Great!

 (Audio Sounds Terrible)Eliminating lip sync
Audio extraction
More speaker and amp options
Multiple levels of volume control
Speaker Layout

Eliminating the Lip Sync Headache

- Lip Sync: technical term for matching a speaking or singing person's lip movement to the audio heard by the listener
- Can be video or audio delay - usually video delay due to signal processing at the display or projector
- Simplest and least expensive cure: Utilize the
 audio output from the video display device

Eliminating the Lip Sync Headache

Eliminating the Lip Sync Headache

Adding More Speakers

Even MORE Speakers!

- 70V amplifier supports many speakers up to 40 watts
- Mono output
- Simple daisy chain with $16 / 2$ wire
- Select appropriate transformer tap to adjust level for various areas

- HDMI Cable
- Audio Cable
- Speaker Cable

Headache: Microphones

- Leviton audio amplifiers are mixing amplifiers
- Multiple inputs including mic
- Each input controllable for level and tone
- Mic input supports:
- Dynamic mic
- 48V phantom power for a condenser mic
- Line level input
- Ducking function on 70v

```
- HDMI Cable
- Audio Cable
- Speaker Cable
```


Multiple Volume Controls

- Best to have 1 volume control
- But many sources have their own volume control
- Add a display or projector and amplifier - yet another headache!

Layered Volume Control

- If possible, take the remote out of the equation by using display settings to set a constant audio output level (line out)
- Set source to mid level
- Set amplifier to lowest setting and set display output level to maximum without distortion
- Adjust amplifier for appropriate listening level and if needed adjust display output level again for no distortion

Speaker Layout Example

- $26^{\prime} \times 20^{\prime}$ Classroom size
- Students will be seated, but will sometimes move around in a technical lab atmosphere
- How many in-ceiling speakers do we need?
- What is the distance between in-ceiling speakers?

Speaker Layout

- Sitting or standing?
- Sitting - 3'6" standard height
- Standing - 5'6" standard height
- Identify speaker dispersion angle
- Determine diameter of the conic section that intersects the standard height of the listener

Speaker Layout

Floor

Known:

Ceiling $=9^{\prime}$
Standing $5^{\prime} 6^{\prime \prime}=3^{\prime} 6^{\prime \prime}$ from ceiling ($42^{\prime \prime}$)
Sitting $3^{\prime} 6^{\prime \prime}=5^{\prime} 6^{\prime \prime}$ from ceiling ($66^{\prime \prime}$)
Assume dispersion angle is 120°

1. Calculate speaker coverage distance (conic section) at standing height, D
2. Divide dispersion angle by 2 to obtain a right triangle: $120^{\circ} / 2=60^{\circ}$
3. Using the properties of a right triangle we determine $1 / 2$ the coverage distance, d
a) Tangent $60^{\circ}=d / 42^{\prime \prime}$ and $d=$ Tangent $60^{\circ} \times 42^{\prime \prime}=72.75^{\prime \prime}=\operatorname{TAN}($ RADIANS(60)) * 42
b) $D=2 \times d=72.75 \times 2=145.5^{\prime \prime}$
c) $D=145.5^{\prime \prime} / 12^{\prime \prime}=12.1^{\prime}$
4. Similarly the calculation for seated height $\left(3^{\prime \prime} 6^{\prime \prime}\right)$ yields a conic section $=19^{\prime}$

Speaker Layout

No Overlap	Minimum Overlap	Maximum Overlap
$-4.4 \mathrm{~dB}$ SPL Variation throughout sound field Distance between speakers = Conic Section	$-2.0 \mathrm{~dB}$ SPL Variation throughout sound field Distance between speakers = 75% of Conic Section	$-1.4 \mathrm{~dB}$ SPL Variation throughout sound field Distance between speakers = 50% of Conic Section

* SPL = Sound Pressure Level

Speaker Placement

- 26^{\prime} x 20^{\prime} classroom
- Seated Listeners = 3'6" high
- Conic section = 19'
- Distance between Speakers = 50% of Conic section ($9^{\prime} 6{ }^{\prime \prime}$)

Provides maximum overlap for students who will be seated and move around
 the room in a technical lab atmosphere

Grounding and Bonding of Shielded Cable

UTP cable with crosstalk prevention technology

Grounding and Bonding of Shielded Cable

- HDBaseT signals are similar to 10GBase-T
- $300-500 \mathrm{MHz}$ clock
- Alien crosstalk
- Headaches when there are adjacent rooms or multiple links

- Which cable?
- Shielded or UTP
- If shielded you must ground and bond
-Where do you ground and bond?
- Your option is the Telecommunications/Equipment Room

Grounding and Bonding of Shielded Cable

- In point-to-point applications, it is often impractical to get to the TR
- More expensive cable and connectivity
- More labor intensive than UTP cable
- Perils of not bonding and grounding
- Safety
- High voltage crossed onto the shield
- Signal integrity
- Drain wire becomes an antenna

Grounding and Bonding of Shielded Cable

- An alternative to shielded cable
- XTP or intermittent shielded cable with alien crosstalk prevention technology

Berk-Tek Leviton Technologies Connectivity Systems for AV

AV6850

Cat 6A Premium 10G AV System

- Recommended for high speed and low-latency AV applications over 10GBASE-T infrastructure

AV6400

Cat 6 Shielded 1G AV System

- Recommended for shielded AV applications over 1GBaseT infrastructure

AV6850 | Cat 6A Premium 10G AV System

System Name	Patch Cord	Jack	Cable	Application
	A)	B)	C)	10G AV support: Business, Universities, AV6850 Premium Cat 6A 10G AV System Retail
SlimLine Boot 6AS10-xx*	Atlas-X1 6AUJK-Rx6	LANmark-XTP		

System Topology

AV6400 | Cat 6 Shielded 1G AV System

System Name	Patch Cord	Jack	Cable	Application
AV6400 Cat 6 Shielded 1G AV System	A) SlimLine Boot $6 S 560-x x x$	B) Atlas-X1 61SJK-Rx6	C) LANmark-HD	1G AV support: Business, Universities, Hospitals, Industrial, Retail

System Topology

Common AV Headaches - Prevented

Headache	Prescription
Accommodating odd room sizes	Adding displays and speaker placement
New AV technologies not supported by old AV cabling	HDBaseT extension on Category cable
Hard to share content/collaborate	Auto and manual input switchers
Video looks great, audio sounds terrible	Audio extraction, amps and speakers
Grounding and bonding of shielded cable	UTP cable with crosstalk prevention tech

Thank you

David Stoltz, Leviton Network Solutions
www.leviton.com/itav

