

Power over Ethernet, The Platform of the Future for Intelligent Building Subsystems

There's a Revolution Happening in our Buildings!

Bob Allan, LEED GA Global Business Development Manager for **Intelligent Buildings**

@ballan32

Bob_allan@siemon.com

Total Convergency

- ConvergeIT is an Intelligent cabling solution
- Multiple building systems can be run over a single IT cabling infrastructure
- Power and control over the same infrastructure
- Zone topology deployment
- These systems can include
 - Lighting
- Audio/video
- Voice/data
- Fire alarms/safety
- Wireless
- Energy management
- Video surveillance
- HVAC
- Access control
- Digital signage

DAS

Traditional – Multiple systems, multiple proprietary cabling types

ConvergeIT – Multiple systems, one structured cabling infrastructure

IP Convergence for Digital Building Technologies

Today's and Future Intelligent Buildings

 Today's building communication systems are moving towards IP Convergence

> Data/IP Network Cable

 One infrastructure using a zoned cabling topology, means substantial CAPEX savings

Attributes of Connected and Converged

- Reduce installation, infrastructure, training, and operational costs
- Change, Update, Add, and Refresh Subsystems without changing the Platform
- Offer unique services to all departments, students, vendors, patients and visitors
- Collect and analyze facility and usage data through IP enabled sensors
- Leverage Cisco wireless and video infrastructure to enable analytics based services and marketing
- Realize measurable return on investment

Case Study

- 50,000 sq. ft. enterprise space at a manufacturing facility
- Drawings were 60% complete when engaged
- Tasked to find construction savings without any material changes in the current designs
- Suggested to change the specification to utilize Power over Ethernet
- Savings came from reduce cabling and power cost.
- The savings would have been much greater if the engagement was earlier in the design process.

Capital Cost Savings							
	PoE Access Control	PoE HVAC VAV Box	PoE HVAC Fan Coil Box	PoE Lighting	Total Savings		
Traditional cost per device	\$351.50	\$275.00	\$425.00	\$375.00			
PoE per device cost	\$280.50	\$355.00	\$550.00	\$350.00			
Savings per device	\$71.00	-\$80.00	-\$125.00	\$25.00			
Savings on devices	20%	-29%	-29%	7%			
Estimated number of devices	35	24	24	700			
Total device savings	\$2,485.00	-\$1,920.00	-\$3,000.00	\$17,500.00			
Estimated system cost with AC building power	\$38,552.50	\$24,600.00	\$28,200.00	\$617,500.00			
Estimated cost using PoE over structured cabling	\$18,567.00	\$14,520.00	\$19,200.00	\$432,250.00			
Savings per CCSM	\$22,470.00	\$8.160.00	\$6,000.00	\$202,750.00	\$239,380.00		

23k square foot building – Erie, PA

Systems Identified

- HVAC
- Lighting
- Generators
- UPS
- Elevator
- Access Control
- Utility Meters
- Fire Life Safety

Possible Additions

- IP Video
- IoT Devices
- Appliances
- Printers/Copiers

Hard-Wire and Integrate
Eight (8) Disparate
Systems per Current
Specifications =
\$970,937

23k square foot building – Erie, PA

Systems Identified

- HVAC
- Lighting
- Generators
- UPS
- Elevator
- Access Control
- Utility Meters
- Fire Life Safety

Possible Additions

- IP Video
- IoT Devices
- Appliances
- Printers/Copiers

Hard-Wire and Integrate
Eight (8) Disparate
Systems per Current
Specifications =
\$970,937
- or -

Modify Design and Integrate "Single Pane of Glass" = \$480,300

Outcomes of Integration

- Reduce Controls First Costs by 49%
- Optimize Building Performance
 - Maximize Occupant Productivity
 - Reduce Utility Consumption
 - Reduce Operating Expenses
 - Reliability-Centered Maintenance
- Minimize Risk
 - Minimize/Eliminate Downtime
 - Reduce Unplanned Capital Repairs
- Visibility (meaningful data)
- Showcase/Marketing

What does Intelligent Buildings Mean to an Installer?

Voice and Data BOM				
Description	Number of Drops			
Office Drops	128			
Cubical Drops	136			
Total Drops	264			

Intelligent Building BOM				
Description	Number of Drops			
PoE Doors	66			
Security Cameras	7			
PoE Light Nodes	283			
Access Points	10			
Total Drops	366			

23k square foot building – In Summary...

23k square foot building – In Summary...

Voice and

Intelligent

Number of LV Drops increased by

~243%

Drops

640

Utilize PoE Wherever Possible

Cost Savings with PoE

- The cost of a power outlet includes conduit, wire, a back box for the outlet and the labor of an electrician
- PoE Example: Purdue University installed over 1,100 PoE wireless access points and saved up to \$1,000 per location
- An average cost to provide typical power to a device is about \$1,000, the whole cost of a PoE network port plus the structure cable drop is \$250 per drop

PoE Applications

- Access Control
- Computer Systems
- Building Automation Systems
- CCTV
- HVAC
- WLAN
- Smart Signs/Web Signs
- Vending Machines
- Gaming Machines
- Audio And Video Juke Boxes
- Electronic Point Of Sale (EPOS)
 Information Systems
- Time And Attendance Systems
- Battery Chargers For Mobile Phones And PDAs
- Electronic Musical Instruments

Average Number of Drops per Device Per 10,000 square feet

Device Type	Number of devices	CAPEX Savings
PoE Lighting	115	\$82,250
Wireless Access Poir	nts 10	\$7,500
Public Address	4	\$3,000
Access Controls	4	\$3,000
Security Cameras	4	\$3,000
HVAC	4	\$3,000
Life Safety	4	\$3,000
Digital Signage	2	\$1,500
IP Clocks	2	\$1,500
Intercom	2	\$1,500
Other	22	\$16,500
Т	otals: 169	\$126,750

IT Network for LED Lighting Systems

The Transition to a Digital Building

Legacy RS-485 protocol for control

Connected Building Infrastructure

- Lower TCO: reduced material & labor cost, energy savings
- Intelligent IP platform, software analytics for broader building automation initiatives

PoE Slashes Cabling Cost for New Construction

AC conduit

- Electrician wage rates
- Bending conduit
- Electrical code

Structured cabling

- Structured cabling cost structure
- Pull bundles
- Low-voltage

Fixture Centric

PoE Lighting Sensor and Topology

PoE Lighting Sensor and Topology

- LiFi network connectivity
- Occupancy sensors
- Switches
- AV Integration
- Advanced scheduling
- CO2 sensors
- Humidity sensors
- Ambient light
- Energy consumption
- Daylight harvesting
- Fine-grain indoor location tracking system

Connected Lighting - Lower TCO

- Key factors driving lower TCO for UPoE-LED
 - Lower installation costs
 - Incremental energy savings
 - Future PoE light fixtures will cost less
- TCO expected to improve
 - LED price/performance increase 20% per year
 - LED luminosity efficiency will continue to improve

*US NYC customer, 35K Sq Ft space

Connected Lighting – Part of a Digital Building

Connected Lighting Part of a Yellow - Non-Life Threatening

of a Digital Building

Power over Ethernet (PoE) Trends

- Over 100 million Power over Ethernet (PoE) enabled ports are shipping annually
- Cisco® 60w Universal PoE (UPOE) technology is driving the adoption of virtual desktop infrastructure (VDI)

- Power over HDBaseT (POH) technology can deliver up to 100w over twistedpair cable, supporting full HD digital video, audio, 100BASE-T and control signals in television and display applications
- The IEEE 802.3bt DTE Power via MDI over 4-Pair Task Force is developing a new remote powering application that will provide superior energy efficiency compared to a two-pair application which will significantly expand the market for PoE systems

Imagine Configuring Lights to Match your Work

A Cisco Example:

- White-Tuneable Connected Lighting in Audio Privacy Rooms (APRs)
- Cisco HQ Connected Lighting user interaction:
 - Find Vacant APRs
 - Scan QR Code to reserve rooms
 - Choose room color mood and intensity
- This is a PROTOTYPE GUI

Top Use Cases

Incremental Energy Savings

Incremental energy savings based on highly dense sensor network and individual fixture control

Electrical Load Shedding

Personalized Workspaces

Granular Occupancy

Granular Daylight Harvesting

Highly Flexible Scheduling

Productivity & Health/Comfort

Human Centric Lighting

Change lighting temperature to follow the circadian rhythm of workers and students

Generic Lighting Applications

Real time conference room availability

Customized lighting for retail

Emergency pathway lighting for first responders

Code blue visual indicator

the power of IoT analytics

• WiFi

• BTLE

• LiFi

Integrated

- Light Occupancy / motion

- Energy • Resources
- Space / occupancy
- Grouping / interactions

Summary

Creating the Next-generation Workspace Experience

Cisco Digital Ceiling

WaterPark Place III

Create an Innovative and Efficient Workspace

Challenge

 Build an innovative, energy-efficient workspace

Digital Transformation

- · PoE-powered lighting with Catalyst switches
- · Sensor-based access to workspaces
- · Analytics with fixture-level visibility

Business Outcomes

- Converge five networks—HVAC, metering, lighting, CCTV, access—into one
- Lower CapEx (~10%) and OpEx (~\$600k)
- Reduce energy costs by 50% by replacing fluorescent lights with LEDs and using PoE
- Anticipate earning Toronto's first Enterprise Leadership in Energy and Environmental Design (LEED) Platinum Certification

