### **ANSI/BICSI 002-2014**

#### **Data Center Design and Implementation Best Practices**

Risk, Reliability & Availability
Selecting a Data Center Design Class

Bob Camerino RCDD DCDC CT

Vice Chair BICSI Mainland Europe District

Owner and Principal Engineer Innovative Technical Solutions







#### **Discussion**

#### Discussion points:

- 1. Risk analysis
- 2. Availability
- 3. Determining Data Center Class
- 4. Reliability
- 5. Efficiency and Reliability
- 6. BICSI Design Classifications
- 7. The BICSI Difference







### **Risk Analysis**

#### Seven considerations:

- 1. Life safety If the system failed would lives be at risk
- 2. Threats Natural, man-made or technology events
- 3. Economic loss from loss of data
- 4. Economic loss from damaged equipment
- 5. Regulatory or contractual impact
- 6. Damage to the organization's reputation
- 7. Access to redundant off-site processing







## **Reliability & Availability**

#### Reliability

 How many times will the equipment work as expected?

#### **Availability**

How often is the equipment operational?







### Reliability & Availability

#### Reliability

The probability that equipment or system will perform its intended function without failure over a defined time period





Year end planned maintenance shutdown (5 days)

#### Availability

The probability that equipment or system is in condition to perform its intended function

51 weeks of Availability per year





### **Availability**

Determine the availability class for a data center

- Operational requirements
- Availability requirements
- Impact of down time
- Component and system reliability
- Impact of class on design







## **Defining Availability Class**



## **Operational Requirements**

| Identifying Operational Requirements |                                     |                                                                                                                                                             |  |  |  |  |  |
|--------------------------------------|-------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| Operational<br>Level                 | Annual Planned<br>Maintenance Hours | Description                                                                                                                                                 |  |  |  |  |  |
| 0                                    | >400                                | Functions are operational less than 24 hours a day and less than 7 days a week. Scheduled maintenance is available during working hours and off hours       |  |  |  |  |  |
| 1                                    | 100 - 400                           | Functions are operational less than 24 hours a day and less than 7 days a week. Scheduled maintenance is available during working hours and off hours       |  |  |  |  |  |
| 2                                    | 50 - 99                             | Functions are operational 24 hours a day and up to 7 days a week for 50 weeks a year. Scheduled maintenance is available during working hours and off hours |  |  |  |  |  |
| <b>→</b> 3                           | 0 - 49                              | Functions are operational 24 hours a day and up to 7 days a week for 50 weeks or more. No scheduled maintenance is available during working hours           |  |  |  |  |  |
| 4                                    | 0                                   | Functions are operational 24 hours a day and up to 7 days a week for 52 weeks a year. No scheduled maintenance is available                                 |  |  |  |  |  |

Key Factor – The amount of time planned for maintenance





## **Operational Availability Rating**

| Allowable Maximum Annual Downtime in Minutes |        |                |                   |                      |                       |  |  |  |  |
|----------------------------------------------|--------|----------------|-------------------|----------------------|-----------------------|--|--|--|--|
| Operational                                  | >5000  | 500 - 5000     | 50 - 500          | 5 - 50               | 0.5 - 5               |  |  |  |  |
| Level                                        | (>99%) | (>99% > 99.9%) | (>99.9% > 99.99%) | (> 99.99% > 99.999%) | (>99.999% > 99.9999%) |  |  |  |  |
| Level 0                                      | 0      | 0              | 1                 | 2                    | 2                     |  |  |  |  |
| Level 1                                      | 0      | 1              | 2                 | 2                    | 2                     |  |  |  |  |
| Level 2                                      | 1      | 2              | 2                 | 2                    | 3                     |  |  |  |  |
| Level 3                                      | 2      | 2              | 2                 | 3                    | 4                     |  |  |  |  |
| Level 4                                      | 3      | 3              | 3                 | 4                    | 4                     |  |  |  |  |

Operational Availability – When the IT services are expected to be available





## **Impact of Downtime**

| Classifying Downtime |                                                                                                             |  |  |  |  |  |
|----------------------|-------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| Classification       | Impact of downtime                                                                                          |  |  |  |  |  |
| Isolated             | Local in scope, single site, minor disruption of delay to non-critical objectives                           |  |  |  |  |  |
| Minor                | Local in scope, single site, minor disruption of delay to key objectives                                    |  |  |  |  |  |
| Major                | Regional in scope, portions of the enterprise, moderate disruption or delay of key objectives               |  |  |  |  |  |
| Severe               | Multiregional in scope, major portions of the enterprise, significant disruption or delay of key objectives |  |  |  |  |  |
| Catastrophic         | Quality of service delivery across the enterprise, significant disruption or delay of key objectives        |  |  |  |  |  |







## **Determining Data Center Class**

| Impact of downtings | Operational Availability Rank |         |         |         |         |  |
|---------------------|-------------------------------|---------|---------|---------|---------|--|
| Impact of downtime  | 0                             | 1       | 2       | 3       | 4       |  |
| Isolated            | Class 0                       | Class 0 | Class 1 | Class 3 | Class 3 |  |
| Minor               | Class 0                       | Class 1 | Class 2 | Class 3 | Class 3 |  |
| Major               | Class 1                       | Class 2 | Class 2 | Class 3 | Class 3 |  |
| Sever               | Class 1                       | Class 2 | Class 3 | Class 3 | Class 4 |  |
| Catastrophic        | Class 1                       | Class 2 | Class 3 | Clas 4  | Class 4 |  |







### **Availability Concerns**

- Component Redundancy
  - Redundancy of critical high-risk components
- System Redundancy
  - Redundancy at the system level
- Quality
  - Commercial or premium grade
- Survivability
  - Protection against external events





### Reliability

"Reliability is the probability that a component or system will perform it's intended function within stated conditions, for a specified period of time without failure"

ANSI/BICSI 002-2014 B.8.1

Reliability is calculated from published MTBF data for components and systems.

(mean time between failures)





### Reliability



#### What is N

 N or Need is the resource required to serve the IT equipment

 N+1 when components (N) have at least one independent backup component (+1)







### **Utilization Efficiency verses Reliability**

N = 100 kVA of UPS

N+1 redundancy can be achieved as:

- 1. 2 x 100 kVA modules = 200 kVA (50% efficient)
- 2.  $3 \times 50$  kVA modules = 150 kVA (66% efficient)
- 3. 4 x 33 kVA modules = 132 kVA (75% efficient)
- 4. 5 x 25 kVA modules = 125 kVA (80% efficient)







### **BICSI DC Design Classifications**

- Class 0: Single path, and fails to meet one or more criteria of Class 1
- Class 1: Single path
- Class 2: Single path with redundant components
- Class 3: Concurrently maintainable & operable
- Class 4: Fault tolerant







### **Availability Class Prefixes**

- Class Fx: Facility (Electrical & Mechanical)
- Class Cx: Cable Plant
- Class Nx: Network Infrastructure
- Class Sx: Data Processing and Storage Systems
- Class Ax: Applications







#### **Electrical Class F0 & F1**







F1 – Single path, module and source





### **Electrical Class F2**



Single source, multiple module, single path





### **Electrical Class F3 Single Utility**



Multiple source, N rated single or multimodule system, dual or multiple path





#### **Electrical Class F4 Two Utilities**



#### **Mechanical Class F0 & F1**



### **Mechanical Class F2**







ENGINEER INNOVATIVE TECHNICAL SOLUTIONS

Single path with redundant components

#### **Mechanical Class F3**

AIR-COOLED AIR-COOLED **CONDENSER CONDENSER** "N + 1" Chillers, **CHILLER CHILLER** Pumps and Condensers Pipe loops recommended









#### **Mechanical Class F4**



#### **Telecommunication Class C0 & C1**



SP – Service Provider

MH - Maintenance Hole

ER – Entrance Room

MDA - Main Distribution Area

HDA – Horizontal Distribution Area

EDA – Equipment Distribution Area

Single path multiple ducts from property line





#### **Telecommunication Class 2**



SP – Service Provider

MH - Maintenance Hole

ER – Entrance Room

MDA - Main Distribution Area

HDA – Horizontal Distribution Area

EDA – Equipment Distribution Area

Redundant and diverse multipath from the property line





#### **Telecommunication Class 3**



SP – Service Provider

MH - Maintenance Hole

ER – Entrance Room

MDA - Main Distribution Area

HDA – Horizontal Distribution Area

EDA - Equipment Distribution Area

Redundant and diverse multipath from the property line to each HDA





#### **Telecommunication Class 4**



SP – Service Provider

MH - Maintenance Hole

ER - Entrance Room

MDA - Main Distribution Area

HDA – Horizontal Distribution Area

EDA – Equipment Distribution Area

Redundant and diverse multipath from the property line to each EDA





#### **Network Class NO & N1**



- Internet Access from a single provider via a single link
- WAN/MAN Single link from one service provider
- LAN/SAN Single link connections throughout the network





#### **Network Class N2**



- Internet- Two service providers with a single link or one service provider with two links
- WAN/MAN Non-redundant circuits from two service providers or redundant circuits from a single provider
- LAN/SAN Single link connections throughout the network with redundant critical components





#### **Network Class N3**



- Internet- Two service providers with a single link or one service provider with two links
- WAN/MAN Non-redundant circuits from more then two service providers or redundant circuits from a single provider
- LAN/SAN Redundant link and components from access switches



#### **Network Class N4**



- Internet- Two service providers with redundant links
- WAN/MAN Multiple circuits from more then two service providers with redundant circuits.
- LAN/SAN Redundant links, components and chassis



### System Class S0 & S1



- Systems are implemented on specific platforms
- Hardware dependent with no seamless failover or self healing

Application specific hardware, direct attach storage







## System Class S2



- Systems are implemented on specific platforms with mirrored applications
- Failure recovery through failover to redundant systems

Application specific redundant hardware with mirrored application







### System Class S3



- Application specific hardware dependent or virtualized with mirrored applications
- Network attached storage with mirrored data on redundant systems

Hardware dependent or virtualized specific processing platforms





### **System Class S4**



- Location transparent, virtualized systems or hardware dependent grid
- Network attached storage with mirrored data on redundant systems and automated data management

Location transparent, virtualized or grid platforms





#### THE BICSI DIFFERENCE

# ANSI/BICSI 002-2014 Data Center Design and Implementation Best Practices covers:

- Site selection
- Space planning
- Architectural
- Structural
- Electrical Systems
- Mechanical Systems
- Fire Protection
- Security
- Management and building systems DCIM, BMS, ESS

- Telecommunications
- Information Technology
- Commissioning
- Design Process
- Reliability and availability
- Applications and Systems
- Service Outsourcing
- Multi-data center
- Testing
- Energy Efficiency





#### **Thank You!**

Bob Camerino RCDD DCDC CT

Vice Chair BICSI Mainland Europe District

Owner and Principal Engineer Innovative Technical Solutions

bobcamerinorcdd@gmail.com





