
Fusion SOC Deployment for Reliable FTTH Network

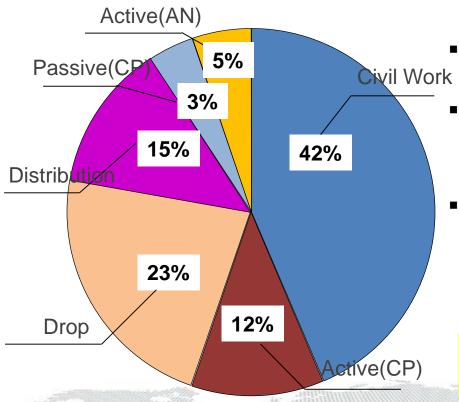
By

Mehabub Ali Mondal & W S Choi Ilsintech Trading India Pvt Ltd 13th April 2017

FTTH SOLUTION

Table of Contents

- 1. Consideration Prior to FTTH Deployment
- 2. Mechanical Field Instable Connector Analysis
- 3. Pre-Connectorized Drop Cable Analysis
- 4. Fusion Splice On Connector as Countermeasure
- 5. Case Study FTTH Asia Pacific
- 6. Fusion SOC Application at Data Center
- 7. FTTH Portfolio
- 8. Wrap Up
- 9. Fusion Splicer Line Up



1. Consideration Prior to FTTH Deployment

FTTH SOLUTION

Successful FTTH deployments can deliver an attractive return on investment if the first cost and life-cycle cost of the network is minimized

- Intelligence about network elements
- How to place these elements in the field for maximum economy
- Understanding the relationship between network element costs

Optimized and Reliable Products will Reduce OPEX and the unexpected cost

[FTTH Deployment Cost Break down]

1. Consideration Prior to FTTH Deployment

FTTH SOLUTION

Connectivity characteristics need to be considered when selecting the appropriate connectivity method for the FTTH access points.

- Easy access to individual line without disturbing others
- Compactness

Optical Performance

- Relatively complicated network
- Various Passive components are applied

Identification
The Best
Connectivity
System
Reliability

 Trouble Shooting & Repairs are all unplanned activity

- Expose to strict weather Condition
- Mechanical issues should be considered like vibration

Environment

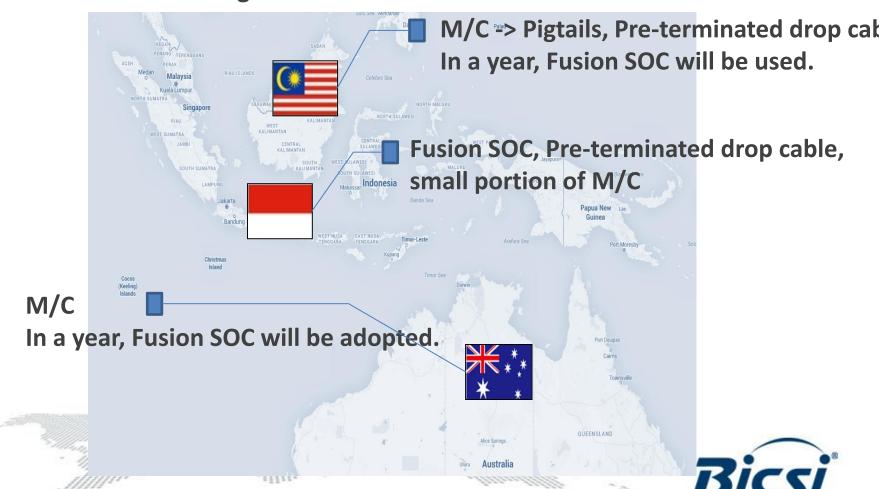
Impact on Labor

- Minimize Craft induced Error
- Objective to reduce OPEX to a minimum

1.1 Which Connectivity is the Best Choice?

FTTH SOLUTION

Big Challenge to choose proper connectivity for subscriber at that moment because no one guarantee long term reliability of connection method


Deployment with M/C on 2007 Experience 25% failure in the initial installation Another 25% failure occur within 1~2 years ✓ Unexpected Maintenance Cost 25,000 A/S labor force Migrate to Pre-Conn. & FSOC ✓ Adopted FSOC, reduce the labor force about 5,000

1.1 Which Connectivity is the Best Choice?

FTTH SOLUTION

Through the field experience, Connectivity technology migrate to new solution to avoid trouble shooting & maintenance cost

1.1 Which Connectivity is the Best Choice?

FTTH SOLUTION

Many ISP have struggled with Mechanical SOC's drawbacks and cost for repair or replacement then **take into account the migration to new connectivity**Statistics of FTTH Failure ("Broadband China/OptiNet City" project)

	Cause	Freq.	Share
1	Power down at central office	329	7.6%
2	Feeder or distribution cable failure	179	4.1%
3	Splitter failure	93	2.2%
4	Drop cable failure	425	9.8%
5	Pigtail or connector failure	193	4.5%
6	Project cutover	153	3.5%
7	Termination failure at subscriber end	2180	50.4%
8	ONU failure	473	10.9%
9	Power down at user terminal	54	1.2%
10	Others	251	5.8%
	Total	4330	100%

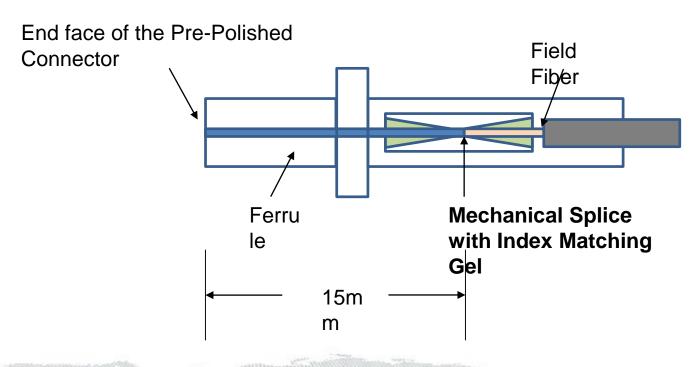
Problems with last mile termination at the subscriber account for more than half of total malfunction

Termination Method share in Jiangsu, China

improved mechanic splicer 54.09% Pre-termination 40.24% Fusion Splicing 5.67%

(Source : Jiangsu Posts & Telecommunications)

[Statistics of FTTH malfunction in Jiangsu, China, Dec.2010]

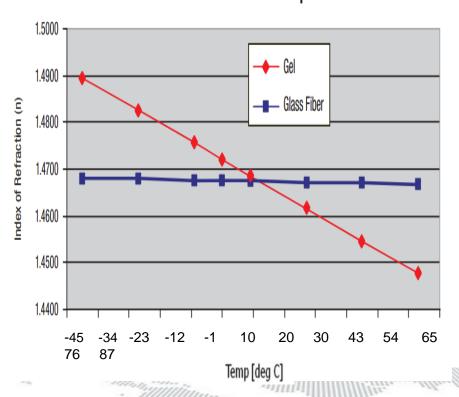


2. Mechanical Field Instable Connector

FTTH SOLUTION

Built-in fiber end face contains refractive index matching gel whose refractive index is the almost same as glass and physically contacted with drop cable fiber

[Cross Section of Typical Mechanical Connector]

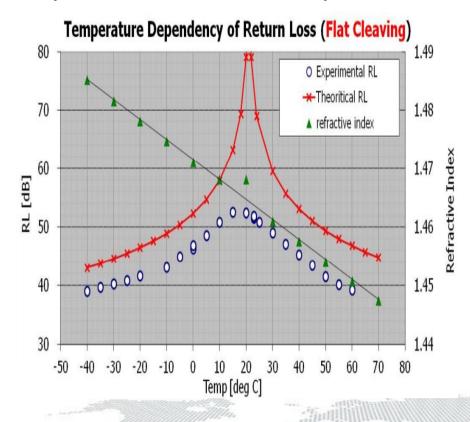


2.1 Mechanical SOC – Index Matching Gel

FTTH SOLUTION

However, the lifespan of the gel and the robustness of the mechanical splice have often been questionable.

Index of Refraction vs. Temperature


- It is engineered to produce an optimum index match with optical fibers at room temperature
- However, the gel's index of refractive changes with high or low temperature differently than glass fiber index of refraction

2.1 Mechanical SOC – Index Matching Gel

FTTH SOLUTION

However, the lifespan of the gel and the robustness of the mechanical splice have often been questionable.

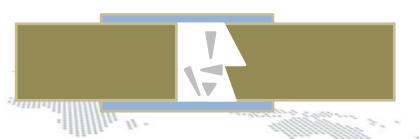
- At 40 °C, the RL has decreased by about 10% from its room temperature value.
- Temperatures down to -30 °C below or rises above +50 °C decreased to less than 40dB return loss.
- In case of analog(Video) transmission, more than 55dB return loss required.

FSOC has great return loss, more than 55dB

2.2 Mechanical SOC – Gap between Fibers

FTTH SOLUTION

Unexpected faults occurring during and after installation of these fiber connections might detrimentally affect performance, it is called 'Blind Splice'.


Some of vendor designed visible check window with VFL(Visual Fault Locator) for Checking air gap, it does not express exact loss(dB)

Glass Fragmentation

Improper operation like overexertion when inserting the fiber into the mechanical splice connector might break the fiber optic and produce glass fragmentation.

Pre-polished ferrule

Installed Fiber

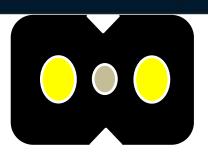
3. Pre-Connectorized Drop Cable

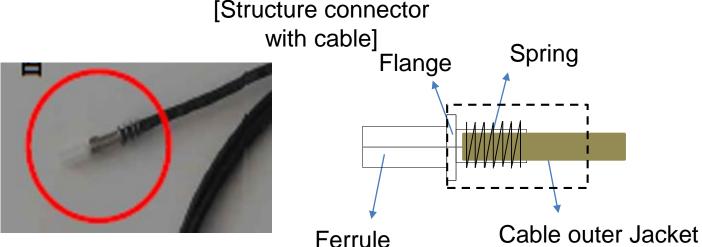
FTTH SOLUTION

Pre-Connectorized Drop cable, well-known connectivity method, is manufactured at factory with various type of connector and These length requested by customer. but it shows some drawback in the field and structure problem issue

- Longer cable length, Higher connector cost (Handling Cost)
- Increasing Inventory cost for each length

- -. No excess slack
- -. Cost down cable and Reduce Stockpiling Cost
- -. No complain by subscriber about excess slack

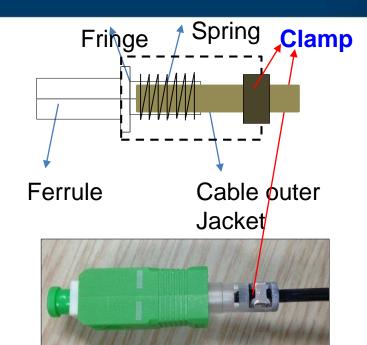




3. Pre-Connectorized Drop Cable

FTTH SOLUTION

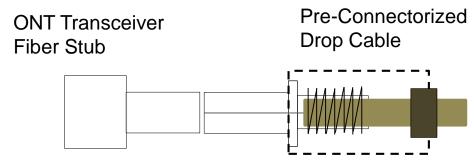
Pre-Connecotrized solution with Rectangular Type Drop Cable has serious problems at field application due to not suitable type for assembly with connector



 Insert cable outer jacket into the ferrule fringe directly because it is very difficult to assemble bare fiber with ferrule at the connector fabrication process

3. Pre-Connectorized Drop Cable

FTTH SOLUTION

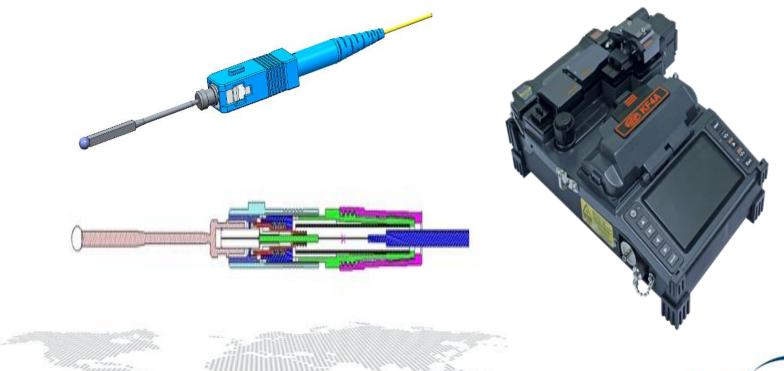


[Structure connector with cable]

The problems in case of tensile load applied, some of products adopt the "Clamp" under the boot to hold tightly the cable.

But at the ONT site, it has below significant

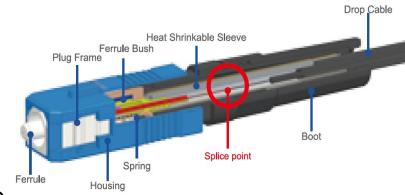
problem


- Fiber stub of ONT transceiver is fixed, without ferrule moving, and ferrule of connector can not move backward due to the clamp as well.
- It can make ONT damage from the transceiver, and it may cause a fatal problem for the Internet connection.

Next Generation Connectivity Solution

FTTH SOLUTION

The next generation connectivity should meet all the requirements for speed, real-time monitoring, performance, reliability and quick time to restoration of today and future's optical network.



4.Fusion Splice-On Connector

FTTH SOLUTION

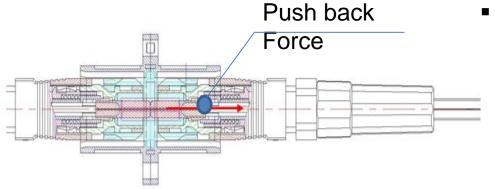
FSOC dramatically reduces attenuation and reflectance, and mitigates craft-induced error by introducing an automated alignment process.

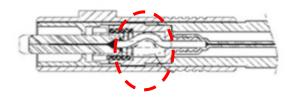
[Optical & Mech. Performance Mechanical vs FSO]

Topusa, a moon i orionnanos moonamea, to i o					
Parameter	unit		Mechanical	Fusion SOC	
Insertion	dB	Тур.	0.3	0.15	
Loss	dB	Max	0.5	0.3	
Return Loss	dB	min	40	55	
Tensile Proof	N		3	60	

Factory-quality connection in a field-installable format

Complies with Telcordia GR-326-CORE, GR-1081-CORE, and IEC 61300.




4.Fusion Splice-On Connector

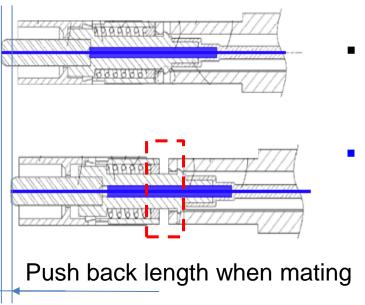
FTTH SOLUTION

FSOC has a patent to prevent fiber bending from pulling back force when mating with other connector in the adapter

 No Space for fiber at connector so induce the fiber bent

[Cross section mating Connectors in Adapter]

 Despite OK just after assembly, it has potential damage of crack or cutting on fiber

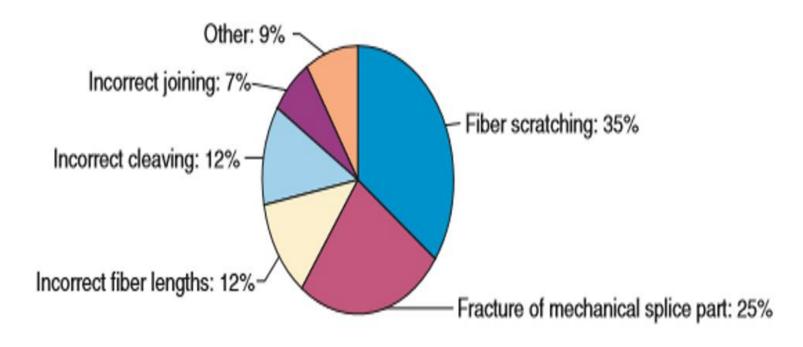


4.Fusion Splice-On Connector

FTTH SOLUTION

FSOC designed "Sliding Back" mechanism to figure out the conventional Connecter's draw back with providing enough space against fiber bending issue

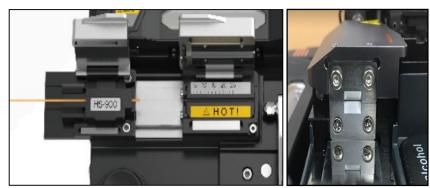
- When mating with ferrules in adapter each ferrule influenced push back force
- " Sliding Back" Design provide the space for fiber to prevent fiber bent



4.1 ALLINONE Fusion Splicer

FTTH SOLUTION

It is very important to detect and investigate **the causes of faults and to apply correct countermeasures**. Imperfect physical contact cause serious environmental problem


4.2 ALLINONE Fusion Splicer

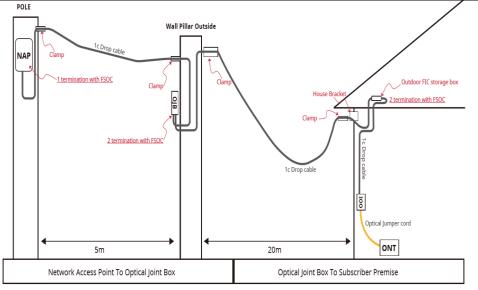
FTTH SOLUTION

Compatible with Fusion Splice-On Connector and figure out Mechanical Splicing drawbacks

High Precision
Cleaver

Prevent the damage on the fiber induced by manual stripper

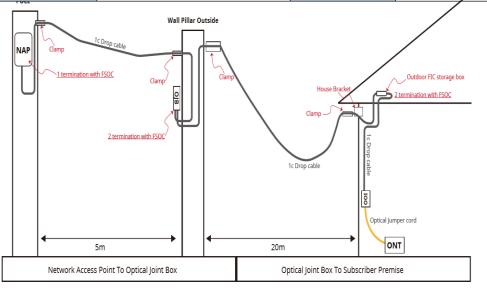
Eliminating fiber chipping and scratch



5. FTTH Case Study in Asia Pacific

FTTH SOLUTION

	Purpose	FTTH Trial Service	ISP	PLDT	Field Conditio n	From NAP To ONT 6 FSOC Termination
-	Technolo gy	G-PON	Region	Philippines		
S	Subscribe rs	Trials for 2 subscribers	Date	Jan 11 ~ 15, 2016		


The output result at the IOO as ready by the F1+OPM is -18.5dBm.
 Average Insertion Loss per connector as this trial was 0.17dB

5. FTTH Case Study in Asia Pacific

Purpose	FTTH Trial Service	ISP	PLDT		
Technolog y	G-PON	Region	Philippines	Field Conditio	From NAP To ONT 2 FSOC Termination
Subscribe rs	Trials for 2 subscribers	Date	Jan 11 ~ 15, 2016	n	21000 Termination

- Pre-installed with Mechanical SOC(TE, -24.1dBm from ONT) showing higher link budget(Fail), then replaced with FSOC
- After one end replacement, it shows -23.01dBm(Pass) then opposite side replacement, it shows -16.9dBm(Pass)

5. FTTH Case Study in Asia Pacific

FTTH SOLUTION

Summary of FSOC as countermeasure for NEXT CONNECTIVITY

0	Technical Issues		Cost Issues		
Conventional Option	Draw Back	FSOC Solution	Draw Back	FSOC Solution	
Mechanical SOC	Fiber Bent Issue	Sliding Back Mechanism	Very high failure rate Re-Installation cost (within 1~2 years, 70%	Proven Technology of Fusion Splicing	
Wechanical SOC	Blind Splice	All-In-One Splicer	, ·		
	Fiber Bent Issue		Leftover 15~20%	Exact Length Calculation	
Pre- Connectorized Drop Cable	Tensile Load Issue	Sliding Back Mechanism	Longer length, Higher Connector Cost		
	Stuck by Clamping		Inventory Cost		

6. Fusion SOC at Data Center

FTTH SOLUTION

Data center require physical cabling with an increasing demand for higher performance and flexibility, all of which require a **reliable**, **scalable and manageable cabling infrastructure**

Save Resource

- Limited Floor Space for Rack
 - Limited Rack Space for Cabling

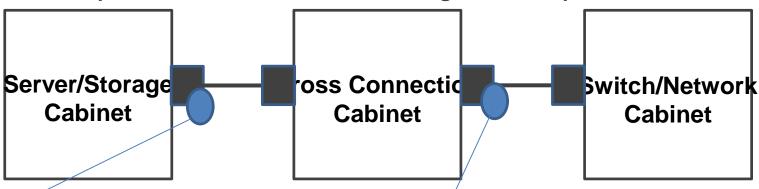
- Cross Conn. vs Inter Conn.
 - High Optical Performance
 - MACs(Move, Add, Change)

Efficient Infrastruc ture

Scalability

Identification

- Reduce Network Down
 Time
- 70~80% Physical Layer
- Traceability



6. Fusion SOC at Data Center

FTTH SOLUTION

Fiber optic cable infrastructure block diagram with Optical Solution

▲ Ribbonizing Holde

Conventional Connectivity Method

Fiber Type : SM, OM1,OM2 OM3, OM4

Jacket : Riser, Plenum, LSZH

Less than 20meter length

- Elimination Extra Cable Slack
- Save limited space in the Rack
- Save Inventory Cost
- Easy to handle with Ribbonizing holder

ARC FUSION SPLICER

- Splicing Loss include Connector's Insertion Loss
- More than 20meter length application
 - Splicing Loss(MM) is below 0.1dB

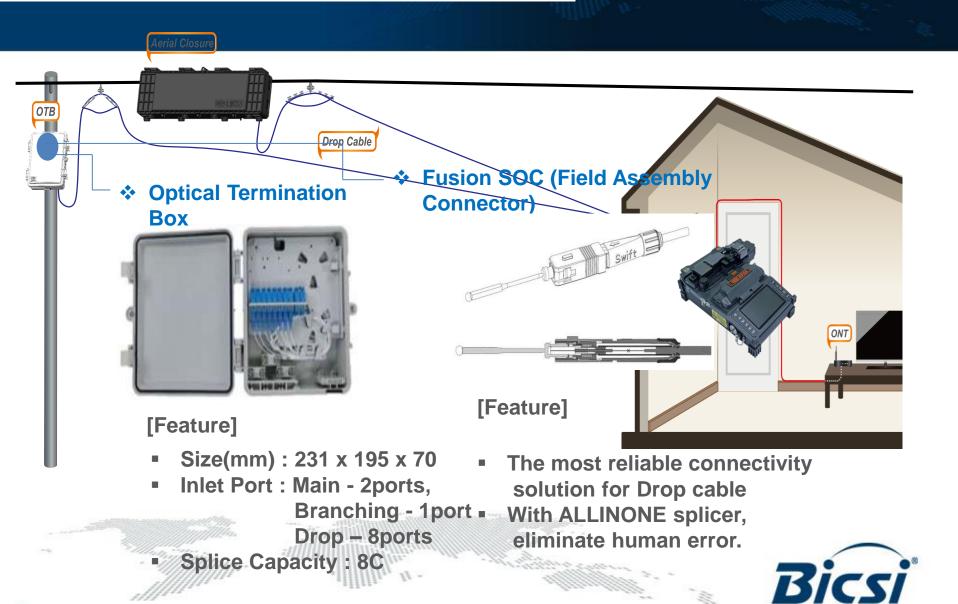
6. Fusion SOC at Data Center

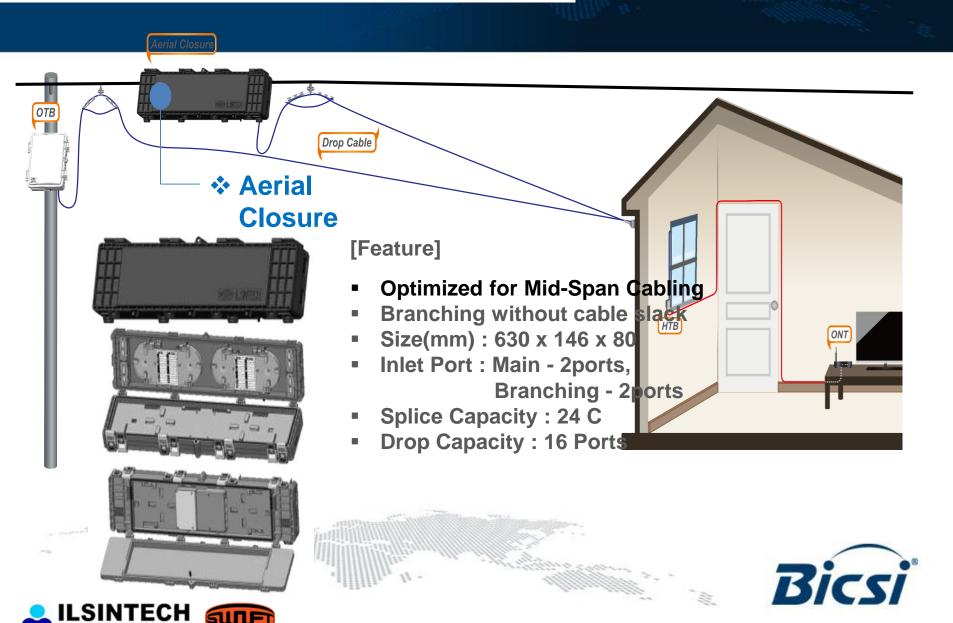
FTTH SOLUTION

Case Study with FSOC MPO & LC Connector

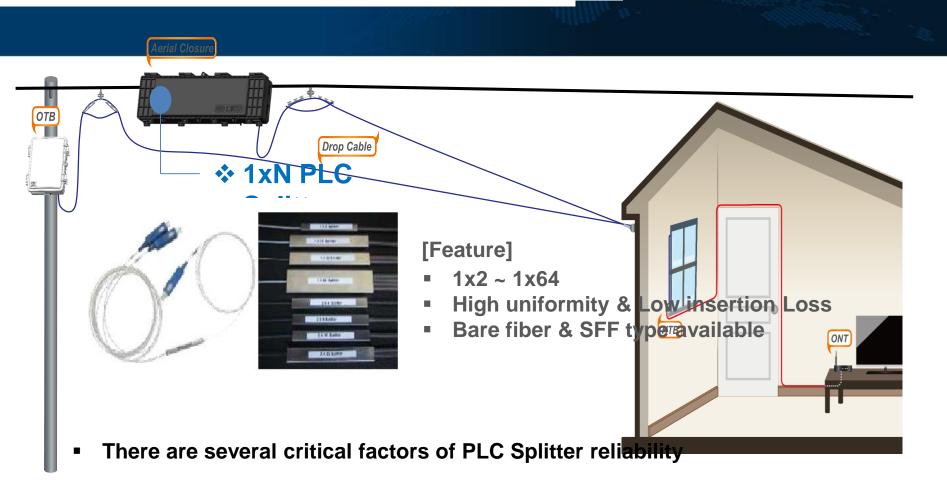
No need of splicing tray
 Save the space in the Rack

- Most of Network failure caused by Connectivity
 → Fast to access to failure ports
- Perfect Length(Slack) management
 - → Save the space in the Rack


[Example of FSOC application before & After]



7. FTTH Portfolio



7. FTTH Portfolio

7. FTTH Portfolio – PLC Splitter(1)

7. FTTH Portfolio – PLC Splitter(2)

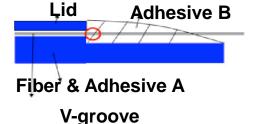
FTTH SOLUTION

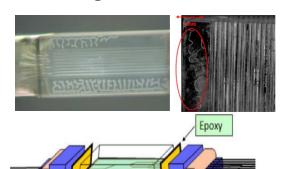
Exact analyzing malfunction factors, then reinforce the In-Process Inspection.

Damaged Waveguide

- Caused in waveguide mask process
- Increase light scattering effect

Broken fiber In Array

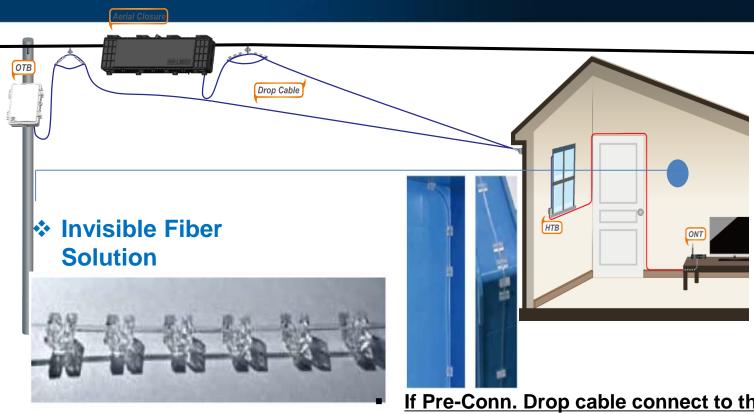

- Caused by imperfect fiber treatment, stripping, cleaving..
- Small Crack or Scratch will be stress point under temperature fluctuation and vibration


Delamination In Fiber Array

Chip & FA

Alignment

- Mismatch fiber, lid, V-groove with adhesive and poor pre-treatment process
- Cause the fibers to move out fiber array
- Low quality Epoxy and non-optical curing process
- Aligned position drift due to the mechanical and environmental stresses

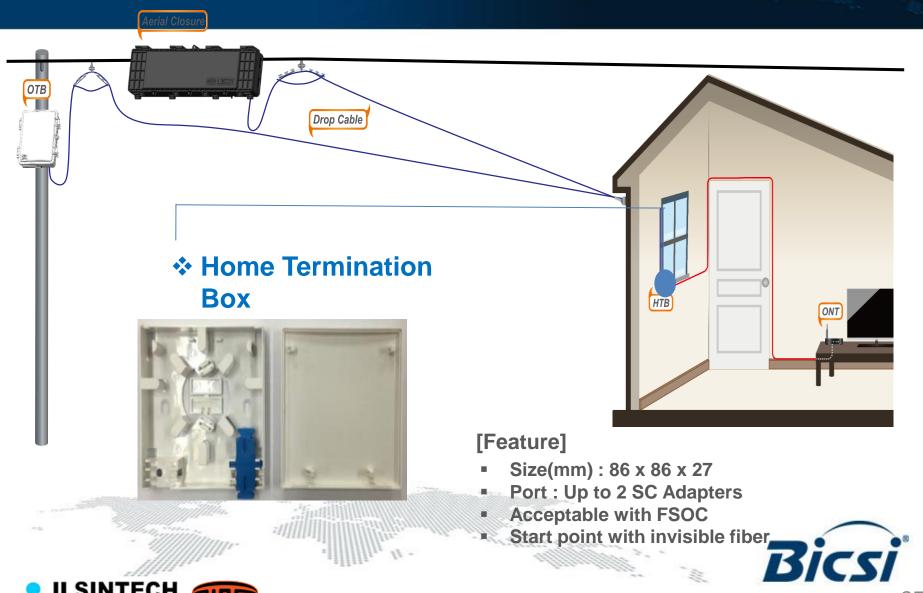


7. FTTH Portfolio – Invisible Fiber

FTTH SOLUTION

[Feature]

- 900um tight buffered invisible fiber,
- G.657.A1(2) and B3
- **Color: Transparent**


- → Extra slack should be piled somewhere in building
- → It becomes cost increase factor
- → 0.9mm transparent cable with FSOC will be perfect option in building

7. FTTH Portfolio - HTB

8. Summary of FSOC Deployment

FTTH SOLUTION

FSOC vs Mechanical Splice On Connector

- Prevent Fiber Bending Structure
- Guarantee Long Term Reliability (No Matching Gel)
- Figure out failures induced by Craft (Human Error)
- Save cost for repair or maintenance (200%~)
- Eliminate potential malfunction rate
- After Break Even Point, Cost down dramatically

8. Roll Out FSOC Business

FTTH SOLUTION

- The most advanced connectivity
 - **▶** Long term reliability
 - **▶** Fiber Bent Protection Design
- Compliance with industry standard
- ► Telcodia GR-326,1081-CORE
- ▶ IEC 61300

Reliability

Direct Purchasing

SUCCESSFUL

DEPLOYMENT

- Direct purchasing by Telco
- ► Fast Technology transfer
- **▶** Easy Maintenance
- Sharing Technical information
- ▶ New FTTH OSP tech & trend

- 1-Day Training Program
- **▶** Passive products
- ► Fusion Splicer Process
- ▶ Warranty Programmada Smith

Training

A/S Activity

- Select appropriate method
- ▶ Proven tech. of FSOC
- ► Fully Qualified PLC

Splitter_

Reduced Unplanned Cost(A/S)

9. Fusion Splicer Line-Up

FTTH SOLUTION

Thank You

