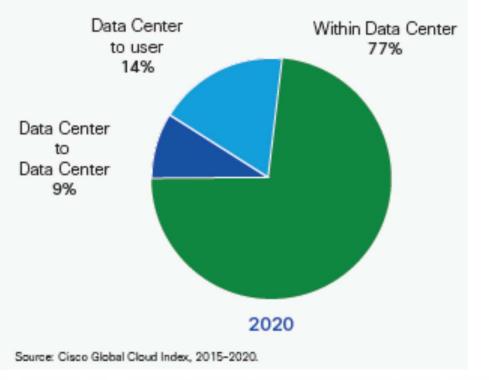
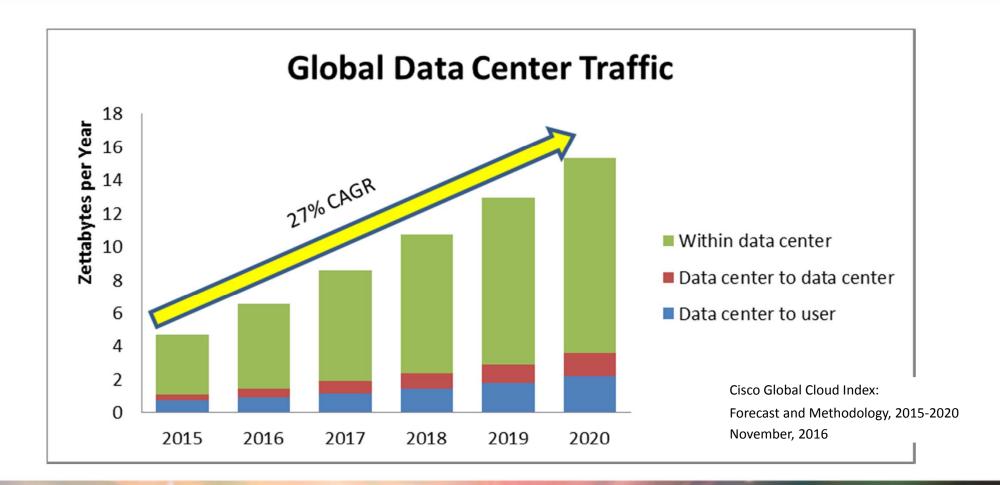
"What Is Going On With Data Center Standards and Technology?"

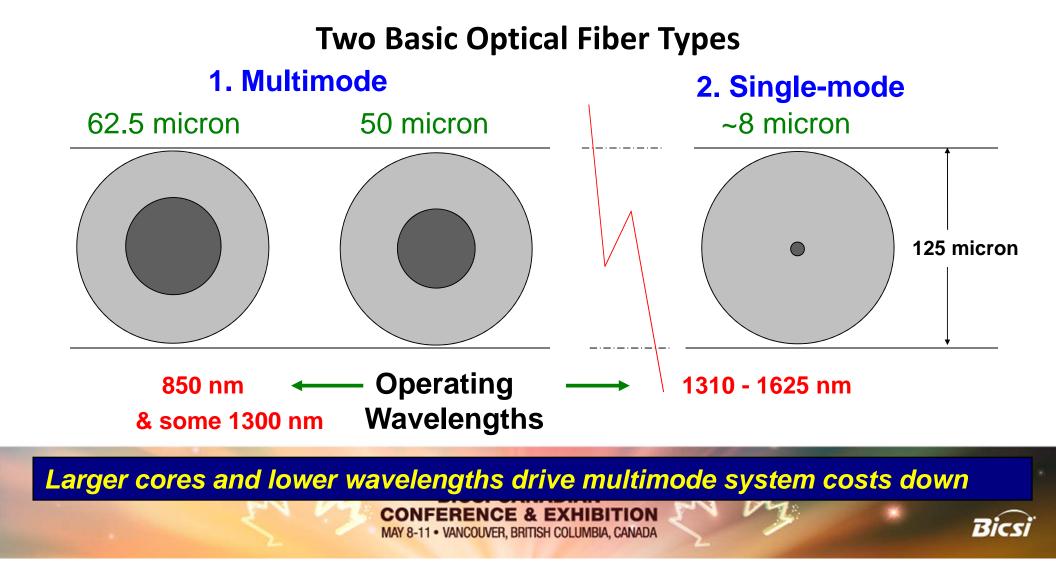

John Kamino, RCDD OFS jkamino@ofsoptics.com

Agenda


- Data Center Market Drivers
- Fiber Types
- Application Standards
- Next Generation Solutions
- Conclusions

Global Data Center Traffic By Destination in 2020

- Global data center traffic will reach 14.1 zettabytes in 2020, from 3.9 zettabytes in 2015
- Hyperscale data centers will account for 47% of all installed data center servers by 2020
- Hyperscale data centers account for 34% of total traffic within data centers in 2015 and will make up 53% by 2020


2017 BICSI CANADIAN CONFERENCE & EXHIBITION MAY 8-11 • VANCOUVER, BRITISH COLUMBIA, CANADA

Bic

Agenda

- Data Center Market Drivers
- Fiber Types
- Application Standards
- Fiber Value Proposition
- Conclusions

Multimode Fiber Types

	(described in the	industry using pri	marily the ISO/IEC 118	01 designations)					Bandwid	th (MHz-km)	
		Ir	ndustry Standards	Attenuation - Typical Cabled Max. (dB/km)		Overfille (OF	d Launch [:] Lc)				
Fiber Type	ISO/IEC 11801 (draft)	IEC 60793-2-10	TIA-568.3-D	TIA/EIA 492AAAx	ITU-T	850nm 1300nm		850nm	1300nm	850nm	953nm
62.5/125	OM1 ⁽¹⁾	A1b	TIA 492AAAA (OM1)	492AAAA		3.5	1.5	200	500		
50/125	OM2⁽²⁾	A1a.1b ⁽³⁾	TIA 492AAAB (OM2)	492AAAB	G.651.1	3.5	1.5	500	500		
50/125	OM3	A1a.2b ⁽³⁾	TIA 492AAAC (OM3)	492AAAC		3.0	1.5	1500	500	2000	
50/125	OM4	A1a.3b ⁽³⁾	TIA 492AAAD (OM4)	492AAAD		3.0	1.5	3500	500	4700	
50/125	OM5 (draft)	A1a.4b ⁽³⁾ (draft)	TIA 492AAAE (OM5)	492AAAE		3.0	1.5	3500	500	4700	2470

⁽¹⁾ OM1 is typically a 62.5um fiber, but can also be a 50um fiber.

⁽²⁾ OM2 is typically a 50um fiber, but can also be a 62.5um fiber.

⁽³⁾ "b" designates Bend-Insensitive

ISO/IEC 11801 "Generic Cabling for Customer Premises"

IEC 60793-2-10 "Product Specifications - Sectional Specification for Category A1 Multimode Fibres"

 TIA-568.3-D
 "Optical Fiber Cabling and Components Standard"

TIA/EIA-492AAAx "Detail Specification for... Class 1a Graded-Index Multimode Optical Fibers"

ITU-T G.651.1 "Characteristics of a 50/125 um Multimode Graded Index Optical Fibre Cable for the Optical Access Network"

Single-Mode Fiber Types

		Industry Standards				Attenuation	
Fiber Type	ISO/IEC 11801	IEC 60793-2-50	TIA/EIA	ITU-T	1310 nm	1385 nm	1550 nm
Std SM	OS1	B1.1	492CAAA	G.652.A or B	1.0	N.A.	1.0
Std SM	OS1a	B1.3	492CAAB	G.652.C or D	1.0	1.0	1.0
Low Water Peak SM	OS2 ⁽¹⁾	B1.3	492CAAB	G.652.C or D	0.4	0.4	0.4

⁽¹⁾ OS2 is referenced in the standard **ISO/IEC 24702** "Generic Cabling for Industrial Premises"

IEC 60793-2-50 "Product Specifications - Sectional Specification for Class B Single-Mode Fibres"

TIA/EIA-492CAAA "Detail Specification for Class IVa Dispersion-Unshifted Single-Mode Optical Fibers"

TIA/EIA-492CAAB "Detail Specification for Class IVa Dispersion-Unshifted Single-Mode Optical Fibers with Low Water Peak"

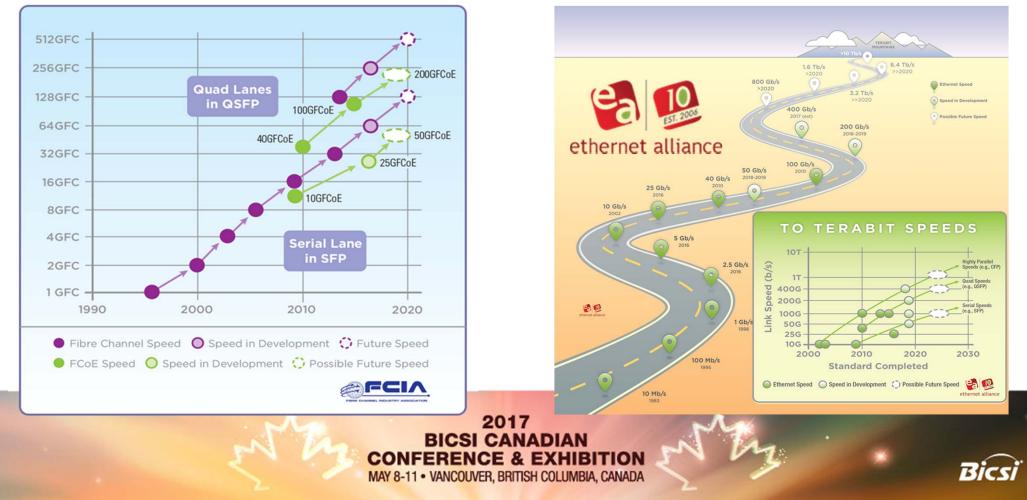
ITU-T G.652 "Characteristics of a single-mode optical fibre and cable"

ITU-T Single-mode Standards

(commonly used in service provider networks)

ITU-T Standard	ISO/IEC Standard	Bend Loss Radius	Bend Loss (Max loss/turn @ 1550 nm)	Nominal Mode Field @ 1310 nm	Comments			
G652.D	OS2	30 mm	0.001 dB (0.1 dB @ 100 turns)	8.6 - 9.2	"Standard" Single-mode			
G657.A1	OS2	10 mm	0.75 dB	8.6 - 9.2	G652.D Compliant "Bend-Insensitive" Single- Mode			
G657.A2	OS2	7.5 mm	0.5 dB	8.6 - 9.2	G652.D Compliant "Bend- Insensitive" Single-Mode			
G657.B3	Non-compliant (chromatic dispersion, low water peak)	5 mm	0.15 dB	8.6 - 9.2	G652.D Compatible "Bend-Insensitive" Single- Mode			
	2017 BICSI CANADIAN							

CONFERENCE & EXHIBITION


MAY 8-11 • VANCOUVER, BRITISH COLUMBIA, CANADA

Bic

Agenda

- Data Center Market Drivers
- Fiber Types
- Application Standards
- Fiber Value Proposition
- Conclusions

Evolution of Short Reach Applications

Latest Ethernet Standards

40G & 100G Ethernet (IEEE 802.3ba)

PMD	Link Distance	Fiber Count and Media Type	Technology	
40GBASE-SR4	100 m OM3 150 m OM4	8-f MMF (12-f MPO)	4x10G parallel NRZ 850nm	
40GBASE-SR4 (extended reach)*	300 m OM3 400m OM4	8-f MMF (12-f MPO)	4x10G parallel NRZ 850nm	
40GBASE-LR4	10 km	2-f SMF	4x10G CWDM NRZ 4 wavelengths around 1300nm	Published
100GBASE-SR10	100 m OM3 150 m OM4	20-f SMF (24-f MPO)	10x10G parallel NRZ 850 nm	in 2010
100GBASE-LR4	10 km	2-f SMF	4x25G CWDM NRZ 4 wavelengths around 1300nm	
100GBASE-ER4	40 km	2-f SMF	4x25G CWDM NRZ 4 wavelengths around 1300nm	
* non-standard so	5 M Las coi	2017 BICSI CANADIAN NFERENCE & EXHIBI -11 • VANCOUVER, BRITISH COLUMBIA,		Bicsi

40G & 100G Ethernet (IEEE 802.3bm)

PMD	Link Distance	Fiber Count and Media Type	Technology	
40GBASE-ER4	30 km (40 km engineered link)	2-f SMF	4x10G CWDM NRZ 4 wavelengths around 1300nm	Published in 2015
100GBASE-SR4	70 m OM3 100 m OM4	8-f MMF (12-f MPO)	4x25G parallel NRZ 850 nm	
100GBASE-SR4 (extended reach)*	200 m OM3 300 m OM4	8-f MMF (12-f MPO)	4x25G parallel NRZ 850 nm	

* non-standard solution

High Speed Short Reach Technologies: Multiple Fiber Parallel Systems

NOW for **100**G:

- One 12-fiber cable
 - 8 active fibers
- 12 Fiber MPO connector
- One wavelength per fiber
- 4 x 25 Gb/s

\rightarrow					
← ←	<u> </u>	<u> </u>	<u> </u>	 <u> </u>	
<u> </u>					
<u> </u>	<u> </u>	<u> </u>	<u> </u>	 <u> </u>	
				 <u> </u>	

Seamless upgrade from 40G to 100G system up to 100m!

25 Gb/s Ethernet (IEEE 802.3by)

PMD	Link Distance	Fiber Count and Media Type	Technology
25GBASE-SR	100 m OM4	2-f MMF	1x25G NRZ
Published July	2016		

Latest Ethernet Developments

200/400 Gb/s Ethernet (IEEE802.3bs)

PMD	Link Distance	Fiber Count and Media Type	Technology	
400GBASE-SR16	100 m OM4/OM5 (32-f MPO)	32-f MMF	16x25G parallel NRZ 850nm	
400GBASE-DR4	500 m	8-f SMF	4x100G parallel PAM4 1300nm	Publication
400GBASE-FR8	2 km	2-f SMF	8x50G CWDM PAM4 8 wavelengths around 1300nm	expected in 2017
400GBASE-LR8	10 km	2-f SMF	8x50G CWDM PAM4 8 wavelengths around 1300nm	
200GBASE-DR4	500 m	8-f SMF	4x50G Parallel PAM4 1300nm	
200GBASE-FR4	2 km	2-f SMF	4x50G CWDM PAM4 4 wavelengths around 1300nm	17
200GBASE-LR4	10 km	2-f SMF	4x50G CWDM PAM4 4 wavelengths around 1300nm	Bicsi

25 Gb/s Ethernet (IEEE 802.3cc)

PMD	Link Distance	Fiber Count and Media Type	Technology
25GBASE-LR	10 km SMF	2-f SMF	1x25G NRZ
25GBASE-ER	40 km SMF	2-f SMF	1x25G NRZ

Publication expected in 2017

50/100/200 Gb/s Ethernet (IEEE 802.3cd)

PMD	Link Distance	Fiber Count and Media Type	Technology	
50GBASE-SR	100 m OM4/OM5	2-f MMF	1x50G PAM-4 850nm	
50GBASE-FR	2 km	2-f SMF	1x50G PAM-4 1300nm	Publication
50GBASE-LR	10 km	2-f SMF	1x50G PAM-4 1300nm	expected in 2018
100GBASE-SR2	100 m	4-f MMF	2x50G PAM-4 850nm	
100GBASE-DR	500 m	2-f SMF	1x100G PAM4 1300nm	
200GBASE-SR4	100 m	8-f MMF	4x50G parallel PAM-4 850nm	
		BICSI CANADIAN CONFERENCE & EXHIBIT MAY 8-11 • VANCOUVER, BRITISH COLUMBIA, (Bicsi

IEEE 802.3 Industry Connections New Ethernet Applications Ad Hoc (IEEE802.3 NEA Ad Hoc)

- Work underway to develop a Call For Interest (CFI) proposing, "Next Generation 400 and 200 Gb/s Ethernet PHYs over Fewer Multimode Fiber Pairs"
 - Suggests the use of Short Wavelength Division Multiplexing (SWDM) technology to reduce multimode fiber counts for standards based 200 and 400Gb/s Ethernet

Next-gen 400 and 200 Gb/s PHYs over Fewer MMF Pairs Call For Interest Consensus Presentation

> IEEE 802.3 Draft 0.3

Technical options for Next-Gen MMF PMDs

Technology (per fiber)	1 fiber pa	air	1 fiber pair	4 fiber pair	ſS	8 fiber pairs	16 fiber pairs
25G- $λ$ NRZ	25G-SF	R		100G-SR4	ļ		400G-SR16
50G-λ PAM4	50G-SR	R	100G-SR2	200G-SR4	l		
2x50G-λ PAM4	100G-SR1	1.2	200G-SR2.2	400G-SR4.	.2	400G-SR8	
4x25G-λ NRZ	100G-SR2	1.4	200G-SR2.4	400G-SR4.	.4	Technology	options for o/s links over
4x50G-λ PAM4	200G-SR2	1.4	400G-SR2.4	800G-SR4.	4	fewer MMF f	
				<u>menclature</u> ber pairs ivelengths		Fewer MMF Pairs" Call	and 200 Gb/s PHYs over For Interest Consensus IEEE 802.3 NEA Ad Hoc, (

Multimode Summary

Speed	10G/λ, NRZ	20G/λ, NRZ	25G/λ, NRZ	50G/λ, PAM-4
10G	802.3ae standard	N/A	N/A	N/A
25G	N/A	N/A	802.3by standard	N/A
40G	802.3ba standard	🕞 🖨 SWDM2 (BiDi)	N/A	N/A
50G	N/A	N/A	N/A	802.3cd proposal
100G	000000000000000000000000000000000000000	N/A	802.3bm standard	⊖ ⊖ SWDM2
	802.3ba standard	N/A	SWDM4	••••••••••••••••••••••••••••••••••••••
200G	N/A	N/A	– N/A	802.3cd proposal
2000		N/A		SWDM4
400G	N/A	N/A	802.3bs proposal	eeeooooeeee SWDM2
		N/A	eeeeeee SWDM4	SWDM8?

Ethernet Standard
Proposed Standard
Proprietary Solution

Single-mode Summary

Ethernet Standard

Proposed Standard

Proprietary Solution

10GImage: Second standardN/AN/AN/A25GN/ASoc. Soc. proposalN/AN/A40GImage: Second standardN/AN/AN/A
40G M/A 802.3cc proposal N/A N/A
40G PSM4 N/A N/A N/A
50G N/A N/A N/A N/A N/A
100G N/A 100G PSM4 N/A
802.3ba standard
200C N/A N/A N/A
200G N/A N/A N/A N/A N/A 802.3bs proposal
400G N/A N/A 802.3bs proposal 802.3bs proposal

Latest Fiber Channel Standards

32GFC – FC-PI-6

Variant	Link Distance	Fiber Count and Media Type	Technology
3200-M5-SN-S	20 m OM2	2-f MMF	1x28G NRZ 850nm
3200-M5E-SN-S	70 m OM3	2-f MMF	1x28G NRZ 850nm
3200-M5F-SN-I	100 m OM4	2-f MMF	1x28G NRZ 850nm
3200-SM-LC-L	10 km	2-f SMF	1x28G NRZ 1300nm

Published in 2013

128GFC – FC-PI-6P

Variant	Link Distance	Fiber Count and Media Type	Technology
128GFC-SW4	70 m OM3 100 m OM4	8-f MMF	4x28G parallel NRZ 850nm
128GFC-PSM4	500 m	8-f SMF	4x28G parallel NRZ 1300nm
128GFC-CWDM4	2 km	2-f SMF	4x28G CWDM NRZ 4 wavelengths around 1300nm

Published in 2016

64/256GFC - FC-PI-7

Variant	Link Distance	Fiber Count and Media Type	Technology
64GFC	100 m OM4/OM5	2-f MMF	Under Discussion Could be WDM w/ NRZ or PAM-4
64GFC	10 km?	2-f SMF	Under Discussion
256GFC	100 m	8-f MMF	Under Discussion PAM-4 or NRZ
256GFC	2 km?	2-f SMF	Under Discussion

Technical agreement expected in late 2017

2017 BICSI CANADIAN CONFERENCE & EXHIBITION MAY 8-11 • VANCOUVER, BRITISH COLUMBIA, CANADA

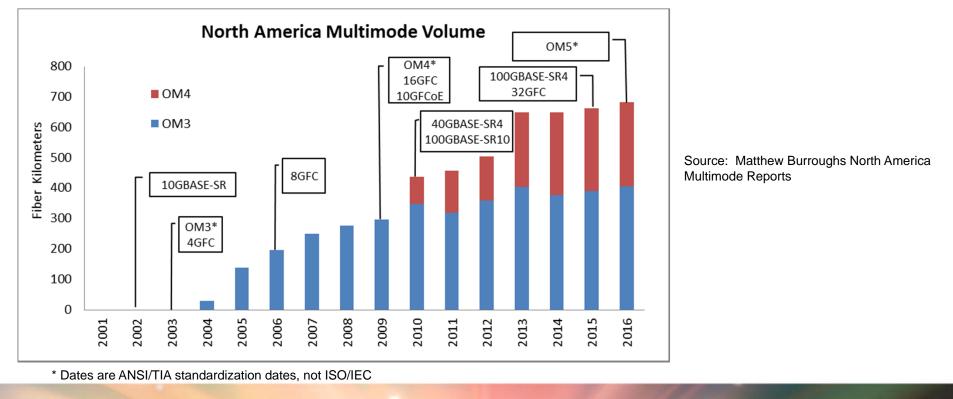
Bicsi

Agenda

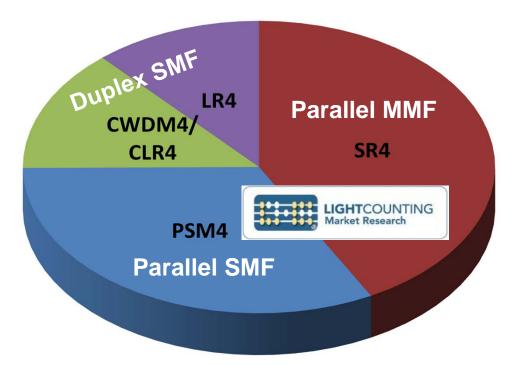
- Data Center Market Drivers
- Fiber Types
- Application Standards
- Next Generation Solutions
- Conclusions

Next Generation Solutions

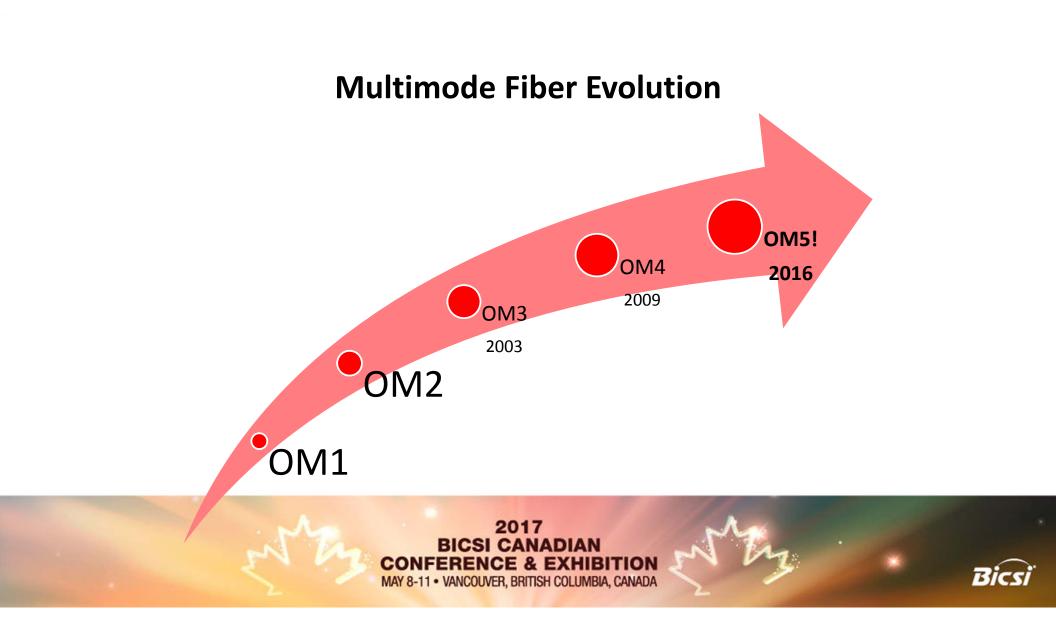
- Short Wavelength Division Multiplexing (SWDM)
- Multilevel Signaling



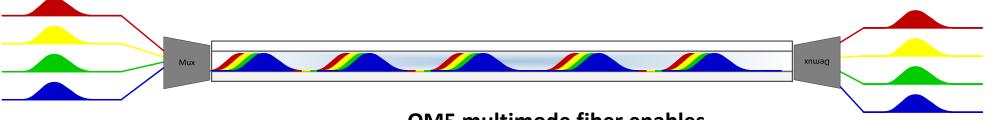
Why do we need a new multimode fiber? And why SWDM?


- Cannot continue to increase fibers as bandwidth increases
 - End user reluctant to run 2x16 32 fiber cables for a 400Gb/s
- SWDM allows multiple wavelengths to be used, reducing the number of fibers
- Utilizes same simplex LC and multi-fiber MPO connector technology
- Can provide duplex fiber 100Gb/s links
- Enables 400Gb/s transmission using 8-fiber technology, currently adopted in 40Gb/s links

Continued Deployment & Growth of OM3/OM4 MMF Continued Transition from OM3 to OM4



100GbE QSFP28 Consumption in 2016



- Chart shows units shipped
- Short-reach SR4 modules had the greatest individual contribution to 2016 shipments of QSFP28 modules

Chart courtesy of Dale Murray, LightCounting

What can you do with OM5 fiber?

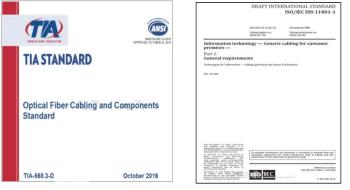
OM5 multimode fiber enables Short Wavelength Division Multiplexing (SWDM) Multiple wavelengths (colors) on the same fiber 40/100/200? Gb/s

Bic

LC Duplex SWDM transceivers

					Link Distance		
Speed	Vendor	Transceiver	Form Factor	λ	OM3	OM4	OM5
40Gb/s	FIT	BiDi	QSFP+	2	100	150	200
40Gb/s	Cisco/ Arista/ Brocade	BiDi	QSFP+	2	100	150	
40Gb/s	Finisar	SWDM4	QSFP+	4	240	350	440
100Gb/s	Finisar	SWDM4*	QSFP28	4	75	100	150

* Announced

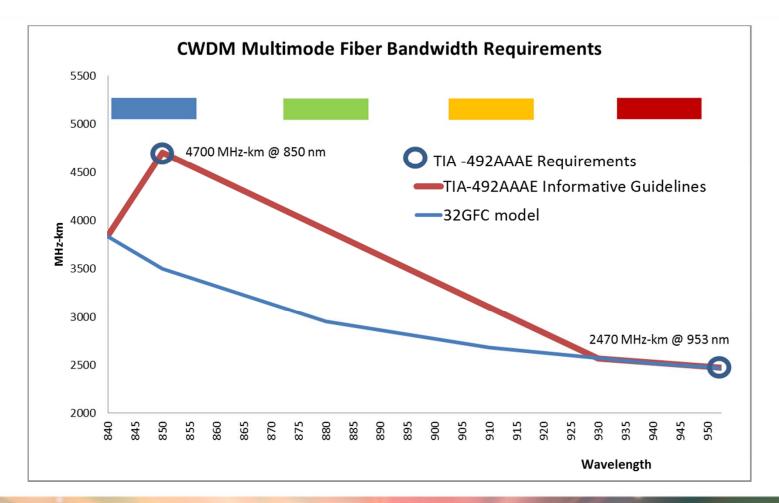

2017 BICSI CANADIAN CONFERENCE & EXHIBITION MAY 8-11 • VANCOUVER, BRITISH COLUMBIA, CANADA

Bicsi

Wideband Multimode OM5 Fiber Standards

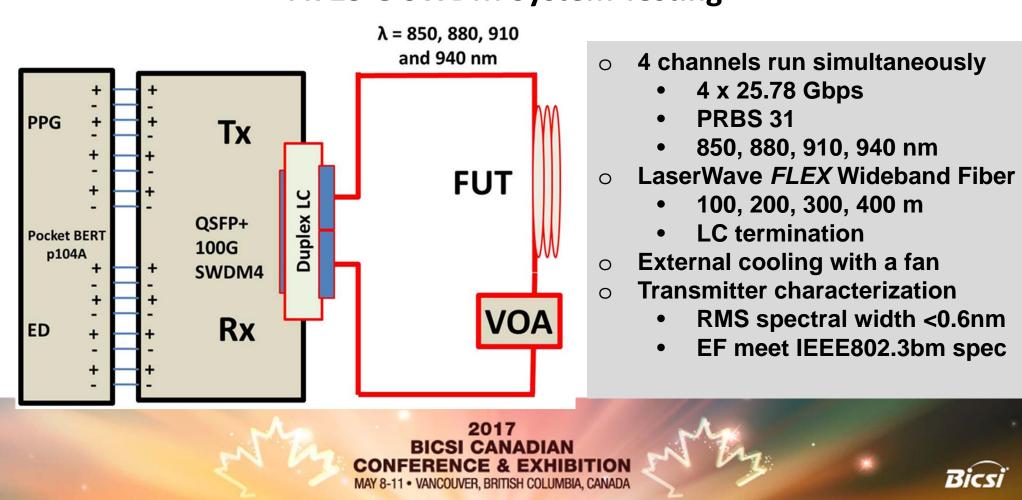
- OM5 MMF extends the performance of OM4 at 850nm through 950nm
- Drop-in replacement for OM4 at 850nm. Fully backward-compatible with previous IEEE and Fiber Channel standards
- Accommodates up to four wavelengths on economical grid spacing
- Standards:
 - Fiber: TIA-492AAAE (2016), IEC 60793-2-10 ed. 6 (target 1Q17)
 - Structured Cable: ANSI/TIA-568.3-D (2016), ISO/IEC 11801 ed. 3 (target 2017)

Fiber Standards

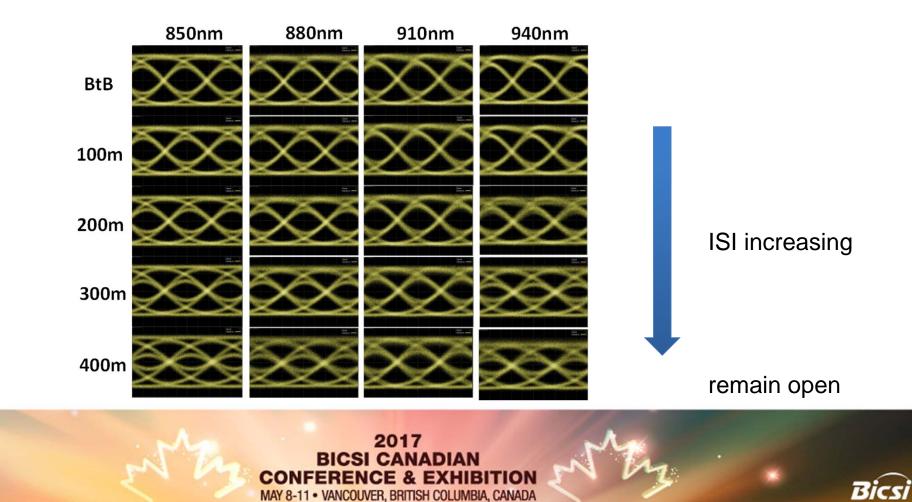

Cable Standards

Differences between OM4 and WideBand OM5 fiber

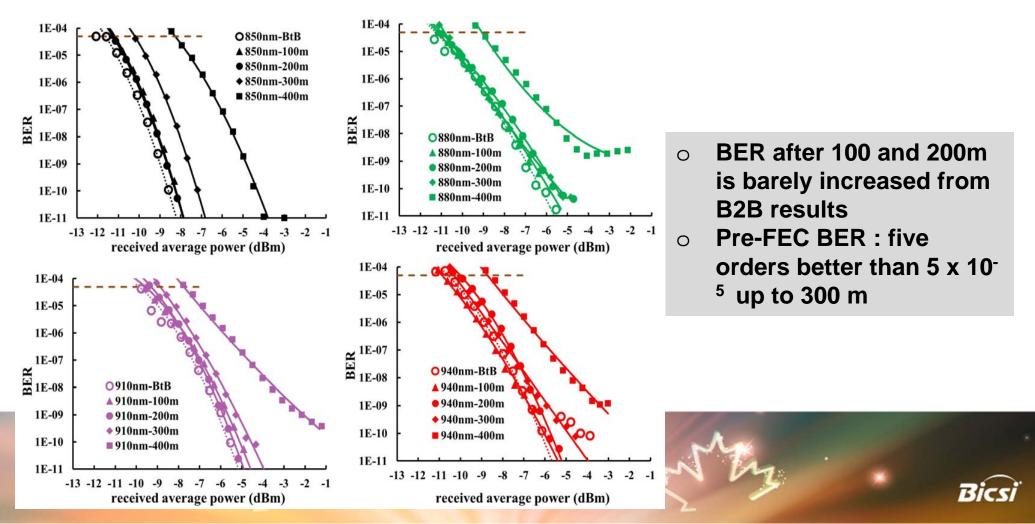
	OM4 Multimode Fiber	WideBand (OM5) Multimode Fiber
Zero Dispersion Wavelength	1295 ≤ λ _o ≤ 1340 nm	1297 ≤ $λ_o$ ≤ 1328 nm
Zero Dispersion Slope	S ₀ ≤ 0.105 ps/nm ^{2.} km for 1295 ≤ λ _o ≤ 1310 nm, and ≤0.000375(1590-λ _o) ps/nm ^{2.} km for 1310 ≤ λ _o ≤ 1340 nm	S ₀ ≤ 4(-103) / (840(1-(λο /840) ⁴)) ps/nm ^{2.} km
850nm Effective Modal Bandwidth (EMB)	4700 MHz-km	4700 MHz-km
953nm EMB	N/A	2470 MHz-km


Wideband fiber field testing

- No additional field testing required for wideband fiber
 - 953nm attenuation requirement
 - If 850nm and 1300nm attenuation requirements are met, 953nm requirements are also met


- 953nm bandwidth requirement

- Performance insured by DMD measured by fiber manufacturers
- Chromatic dispersion
 - Performance insured by fiber manufacturers



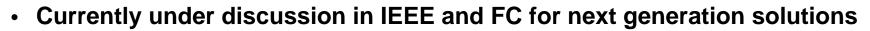
4 x 25 G SWDM System Testing

MAY 8-11 • VANCOUVER, BRITISH COLUMBIA, CANADA

Optical Eyes: 100G SWDM over LaserWave FLEX Wideband Fiber

100G SWDM transmission over LaserWave *FLEX* Wideband Fiber

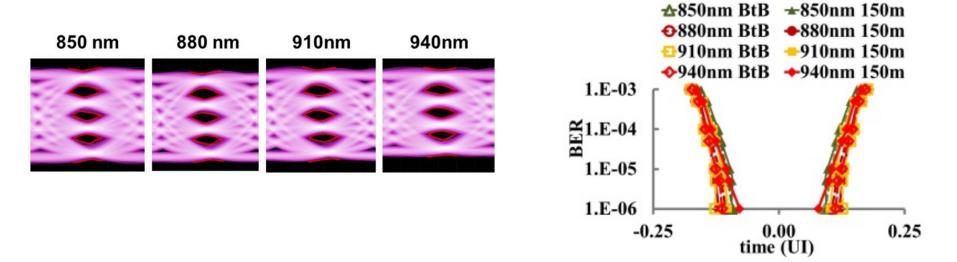
Multilevel Signaling


Multilevel signaling

mplitude

OOK

PAM-4


- PAM-4
 - Increases the bit rate 2x

- Will leverage CWDM efforts to further expand fiber capacity
- 50Gb/s lane rates
- Advanced modulation formats require higher receiver sensitivity than OOK
 - Have to accommodate "multiple eyes" within same vertical interval
- Receiver sensitivity requirements can be reduced via Equalization and/or FEC

51.56 Gbps PAM4 Transmission over LaserWave *FLEX* WideBand Fiber

• Demonstrated capacity of 206 Gbps over a single multimode fiber!

Agenda

- Data Center Market Drivers
- Fiber Types
- Application Standards
- Next Generation Solutions
- Conclusions

Conclusions

- Bandwidth demand continues to grow
- Application standards continue to increase data rates
- Multimode fiber continues to support ever increasing data rates
 - Wideband multimode fiber is standardized in TIA, and nearing conclusion in ISO/IEC
- Multilevel signaling work is underway
 - Path to 50G lanes

