VoIP via IEEE 802.11
“VoWLAN”

Sami Alshuwair
Saudi Aramco Oil Company
Agenda

- Evolution of Enterprise Telephony
- Why Deploy Vice over Wireless LAN
- Market Trends
- Challenges and Solution
 - 802.11-Quality of Service
 - Power Management
 - Security
 - Coverage/Handover
 - Capacity
- Deployment
- Recommendations
Evolution of Enterprise Telephony

From circuit-switched to packet-switched

• Traditionally private branch exchange (PBX)
 – Analog/digital phones, proprietary

• Internet Protocol PBX began a new era
 – Converge voice/data, IP-based enterprise network

• Session Initiation Protocol (SIP) emerges
 – Consistent call control, messaging & voice services
 – Applies to soft phones, single mode & dual mode devices

• VoIP extends coverage to include WLANs
 – SIP-based, VoWLAN phones provide comm.

• Fixed Mobile Convergence (FMC) solution emerging
 – Seamless handoff between mobile cellular and Wi-Fi networks
Why Deploy VoWLAN?

• Reduce mobile cellular minutes
 – VoWLAN conversations are “free” calls
• Improve in-building voice coverage
 – Deploy more access points to improve coverage
• Integrate mobile & enterprise telephony systems
 – Single device for two numbers (Cell & Office)
 – Single contact list
• When cellular phones are not an option
 – VoWLAN signals use 2.4 GHz or 5 GHz bands
• Provide wireless foundation for unified comm.
 – Voice, video, IM, all over common IP network
• Leverage existing VoIP network “VoIP Mobility”
• Most people < 30 years don’t install residential lines
• Fixed line attrition is a serious problem for fixed line operators
• Mobile phone penetration among the adult populations > 75%
• Mobile operators look at enterprises as a new source of revenue growth
• 30% of office calls are now received on mobile devices instead of desktop phones

penetration rates can exceed 100% when subscribers own more than one phone
VoWLAN Market Trends

Growing becoming pervasive
- Integrate enterprise Telephony + Mobility (FMC)
 - Call forwarding, three-way calling, call transfer
 - Wired + wireless; desire equivalent features
- Vendors integrate their voice solutions
 - Handset, WLAN equipment, IP-PBX
 - SIP signaling, presence/collaboration
- Vendor consolidation
 - Motorola/Symbol, Cisco/Orative
 - Avaya/Traverse, Siemens/Chantry
 - Polycom/Spectralink
- IEEE 802.11 tech. improving
 - 802.11e Quality of Service and prioritization
 - 802.11k, 802.11v, 802.11r- better performance
- Mobile cellular technology improving
 - Expanding coverage
 - Faster data performance
VoWLAN Solutions Improve Productivity

- Enterprise:
 - Increased staff mobility across all industries
 - 120+ Million US workers considered “mobile”
 - 70% of office workers are away from desk 40%
 - Increased capabilities ease wireless migration
 - Today: Wired by default, wireless by exception
 - 2-4 years: Wireless by default, wired by exception

- Vertical applications show direct benefit:
 - Healthcare:
 - Better patient care in Hospitals
 - Warehouse/retail:
 - Effective customer services

- Don’t expect immediate cost savings, look to value add:
 - Improved cross department communications
 - More efficient workflow and staff productivity
 - Rapid problem resolution
VoWLAN Challenges

• Packet Loss:
 – Challenge: RTP: packet loss < 3% “MOS = 4”
• Latency: length of time a word leaving a Mic till heard
 – Challenge: One way latency “G.114” <= 150 mSec
• Jitter: inter-arrival time variation from packet to packet
 – Challenge: Packet arrival time <= 30 mSec
• Handset Battery Life
• Coverage & Capacity
 – Challenge: Pervasive coverage, no dropped call, etc.
• Roaming
 – Challenge: Maintain connection/quality <50 ms
• Security
 – Challenge: avoid eavesdropping, maintain access control
• Location Tracking “E911/E112”
802.11 WLAN Physical Layer Standards

<table>
<thead>
<tr>
<th>Standard</th>
<th>Bandwidth (MHz)</th>
<th>Op. Frequency</th>
<th>PHY</th>
<th>MAC</th>
<th>Throughput (Typ)*</th>
<th>Theoretical Rate</th>
<th>Service Interference</th>
</tr>
</thead>
<tbody>
<tr>
<td>IEEE 802.11a</td>
<td>20 MHz</td>
<td>5 GHz</td>
<td>OFDM</td>
<td>CSMA/CA</td>
<td>23 Mbit/s</td>
<td>54 Mbps @ 20MHz</td>
<td>- Cordless phone</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>- Amateur Radio</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>- Aeronautical Radio</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>- Navigation</td>
</tr>
<tr>
<td>IEEE 802.11b</td>
<td>20 MHz</td>
<td>2.4 GHz</td>
<td>DSSS, CCK</td>
<td>CSMA/CA</td>
<td>4.3 Mbit/s</td>
<td>11 Mbps @ 20MHz</td>
<td>- MW Oven</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>- Bluetooth Device</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>- Amateur Radio</td>
</tr>
<tr>
<td>IEEE 802.11g</td>
<td>20 MHz</td>
<td>2.4 GHz</td>
<td>OFDM, CCK</td>
<td>CSMA/CA</td>
<td>19 Mbit/s</td>
<td>54 Mbps @ 20MHz</td>
<td>- Same as 802.11b</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IEEE 802.11n</td>
<td>20 MHz & 40 MHz</td>
<td>2.4 GHz & 5 GHz</td>
<td>OFDM, CCK</td>
<td>CSMA/CA</td>
<td>180 Mbit/s</td>
<td>600 Mbps @ 40MHz & 4 Special Streamers</td>
<td>- Same as 802.11b/11a</td>
</tr>
</tbody>
</table>

Throughput depends on
radio transmission environment, packet size & # active transmitter

OFDMA = Orthogonal Frequency Division Multiplexing
CCK= Complementary Code Keying
CSMA/CA= Carrier Sense Multiple Access/ Collision Avoidance
802.11 Medium Access Control Legacy

- **MAC Frame Types:**
 - Data
 - Control: RTS, CTS & ACK
 - Management: Beacon

- **Distrib. Coord. Func. (DCF):**
 - Uses a CSMA/CA algorithm
 - Senses the medium first
 - Frame transmitted when channel idle for \geq DIFS + backoff timer
 - Otherwise a backoff time B is randomly in interval $[0, CW_{\text{min}}]$
 - Post-backoff ensure fairness between stations
 - Has no QoS-priory “best effort”
 - MAC layer retransmits lost packet:
 - 7 data packets
 - 4 RTS packets

DCF Method Signal Flow

- **SIFS** = Short Interframe Space. 16us for .11a and 10us for .11b/g
- **DIFS** = DCF Interframe Space = SFIS + 2 x Slot Time
- **PIFS** = PCF Interframe Space = SIFS + Slot Time
- **Slot Time** = 20us for .11b & 9us for .11a , .11g is 9us when all STA high-speed otherwise 20us
- **Backoff** = Random * Slot Time

<table>
<thead>
<tr>
<th>IEEE 802.11a,g</th>
<th>CW$_{\text{min}}$</th>
<th>CW$_{\text{max}}$</th>
<th>SlotTime</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>1023</td>
<td>9us (9us)</td>
<td></td>
</tr>
<tr>
<td>3f</td>
<td>1023</td>
<td>20us (20us)</td>
<td></td>
</tr>
</tbody>
</table>
802.11 Medium Access Control Legacy Cont.

- **Point Coordination Function (PCF)**
 - Contention-free frame transfer
 - Single Point Coordinator (PC) controls access to the medium. AP acts as PC.
 - PC transmits beacon packet when medium is free for PIFS time period. PCF has higher priority than DCF (PIFS < DIFS)
 - PCF not used b/c not ideal for real-time traffic:
 - Unachieved performance when traffic load increase.
 - Polling schemes prolong the delay in WLAN
IEEE 802.11e/WMM-SA “QoS” Overview

- **Enhanced DCF Channel Access (EDCA)-prioritized QoS**
 - Contention based
 - DiffServ-Service like
 - Traffic can be classified into 8 different classes
 - Each station has 4 Access Categories (AC)
 - VoWLAN assigned highest priority to transmit
 - HP post-backoff < LP post backoff
 - Perform well under light/moderate load condition

Diagram: 802.11e EDCA vs Legacy 802.11

Legend:
- **AC0**: Voice
- **AC1**: Video
- **AC2**: Video
- **AC3**: Data
- **AC4**: Video
- **AC5**: Video
- **AC6**: Video
- **AC7**: Background

Key Terms:
- **AIFS**: Arbitration Interframe Spacing
- **DIFS**: Distributed Interframe Spacing
- **PIFS**: Point Interframe Spacing
- **SIFS**: Short Interframe Spacing

Beacon frames contain information on # of stations in BSS, channel utilization, available capacity & QoS capability.
IEEE 802.11e/ WMM-SA “QoS” Overview Cont.

- HCF Controlled Channel Access (HCCA)
 - HCF combines polled and CSMA/CA channel access
 - Adapted in WMM-SA
 - Parameterized QoS; promise predefined delay limit for real-time traffic
 - Polling based-polling frames brings added overhead
 - Can start polling period at any time unlike PCF
 - Perform well under heavy load
 - “InServ-Service like”
 - Specify time interval for STA “TDM-service like”
 - More into enterprise solution
 - HCF doesn’t reduce overhead rather improves air traffic control “QoS”; contention loss is reduced and jitter is predictable/low
• Call Admission Control: STA ask AP permission
 – STAs negotiate QoS/characteristics of packet stream expected to send/receive (TSPECs):
 • Nominal MSDU
 • Mean Data Rate- based on Nominal MSDU & packetization period
 • Minimum PHY Rate
 • Surplus Bandwidth Allowance
 • Medium Time
 – If TSPEC rejected due to congestion, STA may use larger packed size → reduce number of packet/Sec → reduce loading
 – Issues with TSPECs
 • With VoIP media characteristics/codec defined after 200 OK message.
 • Doesn't contain “Urgent” Field to indicate priority call “911”
IEEE 802.11e/ WMM-SA “QoS” Overview Cont.

- Transmission Opportunity (TXOP)
 - Defines when a STA has the right to transmit:
 - Starting time
 - Maximum duration
 - Prevent hogging the channel “unpredictable delay”
 - STAs transmit multiple MSDU consecutively from same AC “CFB”
 - Increase system throughput in mixed environment voice/data/video
 - Not suitable for voice communications b/c voice packets are periodic

CFB = Contention-Free Burst MSDU = MAC Service Data Unit
• Major challenge of VoWLAN is battery life
 • Legacy Power Save:
 – STA wakes up every 100ms to listen to AP beacon & TIM
 – Only one data frame is sent at a time
 – Ping-pong fashion
 – Increase application latency 100 or 300 ms
 • WMM Power Save “U-APSD”
 – Power save behavior is negotiated during association “TSPEC”
 – AP buffer voice/data frames within each AC queue till receive a trigger
 – Clients can initiate download at any time no need to wait for TIM
 – SAT transmits uplink frame that act as trigger frame every 20 ms “packetized period”
 – When no call in progress STA doesn’t poll
 – 15 to 40% battery life save w/low latency

U-APSD = Unscheduled-Automatic Power Save Delivery TIM = Traffic Information Map
VoWLAN Handheld Power Management

- Handheld devices today face the challenge of maximizing battery lifetimes.
- Increase battery capacity limited by increasing size and weight if the batteries.
- Major power consumers in a Wi-Fi phone:
 - Radio/WLAN subsystem
 - Host processors
 - LCD
 - Backlight
 - DSP
 - Analog codec
 - Flash, SDRAM
 - LED
 - System on Chip
 - Drainage current, etc.
- Frequency scaling on the cost of a slower processing capability to complete tasks.

\[P = C \times V^2 \times F \]

- \(P \) = Dynamic power consumption
- \(V \) = The supply voltage
- \(C \) = Average switched capacitance/cycle
- \(F \) = The clock Frequency
VoWLAN Security

Security at Layer -2 :

- Wired Equivalent Privacy (WEP)
 - 40 bit – 128 bits key,
 - RC4 symmetric encryption algorithm
 - Authentication easy to break
 - Open System Authentication
 - Any client can authenticate itself
 - WEP used for encryption with right key
 - Shared Key Authentication
 - Four way challenge-response handshake
 - Pre shared WEP key used for encryption “manual”
- Data Integrity:
 - CRC
 - IV is clear-text – 24 bit
 - keys may repeat every $2^{24} = 1.6x10^7$ packets (a few hours of busy traffic)
- 802.11i:
 - Confidentiality
 - Pre-shared key (PSK)
 - Residential & SHO
 - 256 bit key
 - TKIP known as WPA “firmware upgrade”
 - AES “CCMP” known as WPA2 “hardware upgrade”
 - Increased overhead
 - More processing time/delay
 - Data Integrity:
 - More secure message integrity MIC
 - 802.1x: client/server; network authentication & Key establishment
 - Enterprise solution: EAP-TLS use certificate to authenticate network to user and Vice-versa to clients to be issued certificate not cost effective
 - EAP-TTLS & PEAP: use certificate to authenticate server to client, client uses password schemes (CHAP, PAP, etc.) to authenticate themselves to server to clients no longer need for certificates
 - Hard to implement in inter-domain

Basic WEP encryption:
RC4 keystream XORed with plaintext

802.1x: “authentication” EAPOL

The two modes in WPA for Enterprise and Personal

<table>
<thead>
<tr>
<th>Mode</th>
<th>WPA</th>
<th>WPA2</th>
</tr>
</thead>
</table>

Security at Layer -3 “Network Layer”: IPsec “VPN”
- Site-to-site connections
- Some ISPs block IPsec or charge more
- Suite of protocols:
 - Key management protocol: IKE, Kerberos
 - Authentication Header (AH)
 - Encapsulation Security Payload (ESP)
- Has impact on packet overhead size that diminish benefit of low-bit-rate codes
- Security and efficiency are conflicting requirements - IPsec affecting:
 - Speech quality
 - Channel capacity
 - Delay voice packet

Security at Layer -4 “Application Layer”:
- SSL-TLS “VPN”:
 - Web client-to-server
 - Suitable for most nomadic
 - Integrate with other protection tech. to identify malicious traffic
- SRTP → key management not yet standardized
VoWLAN Security Cont.

Malware

Self-replicating
- Standalone
- Needs host program

Non-replicating
- Hidden function
- Hidden presence
 - Not evasive
 - Evasive against detection

Examples:
- Worms
- Viruses
- Trojan horses
- Bots, spyware
- Rootkits

Note: malware often have multiple characteristics and fall in more than one category
VoWLAN Security Cont.

Defenses

Preventative
- Patching
- Antivirus/anti-spyware updates
- Close unnecessary ports
- Vulnerability assessment/penetration testing

Defensive/reactive
- Host-based
 - Active
 - Personal firewall
 - Passive
 - Antivirus/anti-spyware/rookit detection
 - Virtual machine/sandbox
 - Host-based IDS
 - Honey pot, black holes
 - IDS
- Network-based
 - Passive
 - Active
 - Blocking
 - Network admission control
 - Deception
 - Redirection
 - Slowing down
 - Rate Throttle
 - Trap

Sapm filtering
Whitelists/blacklist
Firewalls
Access control list
Network Access Control Conceptual View “Admission Control”

THE GOAL

1. End user attempts to access network
 - Initial access is blocked
 - Single-sign-on or web login

2. NAC Server gathers and assesses user / device information
 - Username and password
 - Device configuration and vulnerabilities

3a. Noncompliant device or incorrect login
 - Access denied
 - Placed to quarantine / Captive Portals for remediation

3b. Device is compliant
 - Placed on “certified devices list”
 - Network access granted

NAC Goals:
- Mitigation of zero-day attacks
- Policy enforcement
- Identify and access management

VoWLAN Security Cont.
VoWLAN Security Cont.

Best Practice

VLAN Prevent:
- Toll fraud
- Denial of Service (DoS) attacks
- Eavesdropping & Interception

SSID: Data
Security: PEAP + AES
AP Channel:
SSID “Data” = VLAN 1
SSID “Voice” = VLAN 2
SSID “Visitor” = VLAN 3

802.1Q Wired Network w/VLANs

SSID= Service Set ID, PEAP= Protected Extensible Authentication Protocol, AES= Advanced Encryption Standard, LEAP= Lightweight Extensible Authentication Protocol
Mobile Phone Security Policy:

- ISO/IEC 27002 for remote access policy recommendation
- Who owns his/her mobile phone?
- Do not go for the slick one!
- Devices vendors don’t care about anti-malware so use third-party mobile security package
- What to look for in mobile phone security software
 - Effectiveness
 - Features
 - Ease of Use
 - Installation & Updates
 - Technical Help/Support
VoWALN Scanning Types

- **Scanning required for many functions.**
 - finding and joining a network
 - finding a new AP while roaming

- **Passive Scanning**
 - Switch for 1st channel then listen for Beacon frames
 - Measure S/N Ratio
 - Switch to new channel then listen for Beacon frames
 - Till all channels scanned
 - **Handover delay > 600 ms**
 - **Power intensive b/c receiver powered up for 100ms**

- **Active Scanning**
 - On each channel Send a Probe, wait for a Probe Response
 - Beacon or Probe Response contains information necessary to join new network.
 - **Handover delay between 110 & 160 ms depend on number of STA within BSS**
 - Fast Handover delay “scan non-overlap ch.” around 25 to 30 ms
 - **Less power intensive**

- **AP Neighbor list (802.11k)**
 - Each AP sends down list of “suitable” neighbor APs based RF measurement

- **Site Table Info.**
 - The last APs we associated with
 - APs we can hand off to but haven’t visited yet
 - APs that we have pre-authentication with

Active Scanning Type

1. STA send Probe
2. APs send Prob Response
3. STA sends Authentication request
4. AP sends Authentication Response
5. STA sends Association request
6. AP sends Association Response

Image credits: Bicsi
VoWLAN Coverage/Handover

- **Intra-ESS:**
 - Handoffs between access points in same ESS
 - APs sharing same SSID
 - Same IP subnet

- **Intra-ESS: Layer-2 “Horizontal”**
 - Handoffs between access points in same ESS
 - APs sharing same SSID
 - Separate subnet
 - AP handle tunnel phone's traffic to back to home AP

- **Inter-ESS: Layer-3 “Vertical”**
 - Handoffs between different APs/network providers
 - New IP address
 - Security associated will be different
 - In general not seamless

- **Inter-Network:**
 - Handoffs between 802.11 and others wireless network (e.g., GSM)
 - Requires call-signaling & network -infrastructure support

- **Roaming Support:**
 - STA associates with strongest AP
 - STA stays connected till AP disassociated
 - When disassociated STA scan all ch. to find strongest AP
 - STA authenticates/associates with new AP

- **Cell Handoff Interval:**
 - \(H = \frac{(2 \times R \times (1-2 \times D/100))}{S} \)

ESS = Extended Service Set **SSID** = Service Set Identifier
• Delay incurred during handover due to:
 – Discovery “probe delay Passive-Scanning” 90% total overall delay
 – Re-authentication; authentication & re-association

• **End-to-end delay budget should be < 250ms:**
 – Transmission; propagation + MAC (collision + backoff)
 – Processing
 – Codec
 – Standards

• 802.11 standard issues
 – Doesn’t allow STA associated with two APs simultaneously
 • **Break-before-make** handover unlike cellular technology
 “make-before-brake”
 – With re-authentication 802.1x & .11i handover takes 300-500ms
 • Include scanning, joining new ch, authentication & association.
 • Establish secure key introduce delay “four handshake”
 – Doesn’t prevent SATs being authenticated with multiple APs
 • This authentication is tunneled through current AP & resulted pairwise keys cached in Site Table → handover delay shortened
VoWLAN Coverage/Handover Cont.

- **Recommended 15%-20% cell overlap to avoid dead spots**
- Closely placed APs cause STAs to roam too often
- **Place VoWLAN AP every 300m² instead of 500m²**
- **Further Enhancement**
 - 802.11r-fast handover:
 - cache context “neighbor graph”
 - 802.11K-Radio resource measurement enhancements
 - Channel report sent by AP
 - Neighboring Report sent by AP
 - 802.21 “make before brake”
 - Enabling seamless handover between heterogeneous network types
VoWLAN Fast Secure Handover

Layer 2 “Horizontal” - Same IP Subnet & using 802.1x/EAP

Central Authentication Server

With CAS handover delay reduced from 500ms to 100ms

802.1x Master-Secret (certificate, password, etc.) → Pairwise Master Key → Pairwise Transparent Key → Per Packet Key
VoWLAN Fast Secure Roaming Layer 3 “Vertical”-Different IP Subnet

1. Client associates with AP and receives an IP address, optionally using WPA (802.1x) or VPN for security.
2. Control “B” creates client database: MAC & IP, security context & association, QoS, etc.
3. Client roams to new subnet or roams out of radio coverage and returns.
4. Client associates with new AP & controller. Client database is copied to new controller.
5. New controller recognizes roaming event and provides client with the same initial IP address.

GRE = Generic Routing Encapsulation is a tunneling protocol.
VoWLAN Capacity

- What is the max. number of voice call AP can support?
 - Ask your vendor
- Channel Capacity is function of:
 - Transmission rate “throughput”
 - Voice packet payload length depended on encoding
 - Packetization interval
- Capacity enhancement solutions:
 - Enhanced air access MAC “HCF”
 - Header compression
 - Frame aggregation

Timing Overhead of single Voice Frame over 802.11b

<table>
<thead>
<tr>
<th>Delay component</th>
<th>Time (μs)</th>
<th>Reason</th>
</tr>
</thead>
<tbody>
<tr>
<td>DCF Inter Frame Space (DIFS)</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>Average channel access delay due to CA</td>
<td>310</td>
<td>31/2 slots × 20 μs</td>
</tr>
<tr>
<td>Voice Frame (G.729)</td>
<td>14.55</td>
<td>20/1.375(Mbps)</td>
</tr>
<tr>
<td>RTP/UDP/IP encapsulation</td>
<td>29.09</td>
<td>40/1.375</td>
</tr>
<tr>
<td>LLC/SNAP encapsulation</td>
<td>7.27</td>
<td>10/1.375</td>
</tr>
<tr>
<td>MAC header and trailer</td>
<td>20.36</td>
<td>28/1.375</td>
</tr>
<tr>
<td>PLCP preamble and header</td>
<td>192</td>
<td>Long preamble</td>
</tr>
<tr>
<td>Short Inter Frame Space (SIFS)</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>PLCP preamble and header (for ACK)</td>
<td>192</td>
<td>Long preamble</td>
</tr>
<tr>
<td>MAC header and trailer (for ACK)</td>
<td>10.18</td>
<td>14/1.375</td>
</tr>
<tr>
<td>Total</td>
<td>835.45</td>
<td></td>
</tr>
</tbody>
</table>

With DCF to transmit 22us (30 byte) voice payload takes 835 us → 3% efficiency

Packetization Overhead = \(\frac{40+34+24}{40+34+24+160 \text{ (G.711)}}\) ≈ 40%
VoWLAN Capacity Cont.

Throughput Effect:

- Transmission rate affected by channel condition & distance
- 80.11b is around 6Mbps & 802.11a/g around 26/17Mbps
- VoIP capacity can not be estimated based on raw data throughput:
 - **Common mistake:**
 - Assuming 10Kb/s voice source, theoretical capacity of 802.11b is 11Mbps/10Kbps =1100 → **550** two-way VoIP sessions.
 - In practice only a few VoIP users can be supported in 802.11b!
 - Low payload to overhead ratio for short VoIP packets and inherent inefficiency in 802.11 MAC
VoWLAN Capacity Cont.

Packet Interval/Vocoder Effect:

- Voice call # increase w/packet interval increase
- 10/10/30ms intervals used for G.711/G.729/ G.723
- Many vendor select 30ms
- VoWLAN 802.11a 5x than VoWLAN 802.11b
- But larger packetization interval \(
ightarrow\) more end-to-end delay
VoWLAN Location Tracking

How to track a E911/E112 VoIP caller’s location

- WLAN:
 - RF fingerprinting traces signal strength for every signal heard by AP

- Cellular:
 - Network provides the ability to do Global Position System for mobile phones
VoWLAN Deployment

• Fixed-Mobile Convergence (FMC):
 – Allows mobile phones to connect to Wi-Fi networks when available

• Enterprise FMC:
 – IP PBX-Centric:
 • vendor specific
 – IP PBX-independent:
 • Special client software on the hand set
 – Carrier-Centric:
 • No need to integration with enterprise IP PBX
 • Compensate for poor in-home cellular coverage
 • UMA most successful form
VoWLAN Deployment Cont.

Carrier-Centric:

• Unlicensed Mobile Access (UMA):
 – Allows mobile phones to connect to Wi-Fi networks when available
 – Make-before-break handoffs
 – Switch to cellular network as they move out-of-range of WLAN AP “hot spot”
VoWLAN Deployment Cont.

• IP Multimedia System (IMS):
 – Aid the access of multimedia and voice applications from wireless and wireline terminals “FMC”
 – Dual-mode telephony use VoIP in both the cellular and Wi-Fi via IMS
 – SIP based
 – IMS is like re-invent the public Internet with new singling control overlay
VoWLAN Challenges and Solutions

• Packet Loss:
 – Challenge: RTP: packet loss < 3%
 – Solution: Packet loss concealment & redund. algor.

• Latency:
 – Challenge: One way latency “G.114” ≤ 150 mSec
 – Solution: 802.11e/WMM + wired QoS mechanism

• Jitter:
 – Challenge: Packet arrival time ≤ 30 mSec
 – Solution: Jitter buffer, 802.11e/WMM + wired QoS

• Bandwidth Management:
 – Challenge: loaded network/SW with adv. encoding
 – Solution: load balancing, call admiss. control
VoWLAN Challenges and Solutions Cont.

- **Handset Battery Life**
 - Challenge: improve talk/standby time to 4+/100+ Hrs
 - Solution: U-ASPD, propriety

- **Security**
 - Challenge: avoid eavesdropping, maintain access control
 - Solution: WAP2 (wireless) + VLAN (wired), 802.1x

- **Hand off**
 - Challenge: Maintain connection/quality <50 ms
 - Solution: 802.11r, propriety, 802.11k/.11v (future)
VoWLAN Challenges and Solutions

• Coverage & Capacity
 – Challenge: Pervasive coverage, no dropped call, etc.
 – Solution: HCF, propriety, frame aggregation

• Location Tracking
 – Challenge: meet E911 and E112 requirements
 – Solution: WLAN appliance, GSM/CDMA tracking
Recommendations

• Determine the need for VoWLAN
• Make sure that WLAN coverage is sufficient
• Verify WLAN is ready for VoWLAN
• Ensure VoWLAN compatibility with enterprise WLAN
• Gain experience with single-mode phones before introducing dual-mode “smart phones”
• Understand enterprise security polices & develop “culture security”
• Deploy VoWLAN single console Management
 – Planning correct coverage, density, resilient, performance “QoS”
 – Enables a holistic view of entire network
 – Key for enterprise-wide policy enforcement
Question?