The Impact of Emerging Data Rates on Layer One Fiber Cabling Infrastructures

Rick Dallmann
Senior Data Center Infrastructure Architect
CABLEExpress
36 Years of Experience

- CABLExpress is a manufacturer of custom-built structured cabling solutions focused on high-end data center, network and SAN environments
- RCDDs (Registered Communications Distribution Designer), DCDC, CDCD on staff
- Voting and contributing member of the TIA TR-42 board
- Subject matter expert presenters at AFCOM, BICSI, DatacenterDynamics (DCD), and FOSE conferences
- Expert structured connectivity data center design, spec and implementation according to TIA-942-A standards and IEEE 802.3 standards
- OEM and authorized solution provider for Brocade, Arista, HP and others
- ISO 9001:2008 process- and design-certified – qualification documented and verified by third party
Agenda

- Data Center Technology Trends
- The Optics and History
- Standards and Solutions
 - Ethernet (25/40/100/400 Gigabit)
 - Fiber Channel (16/32/64/128 Gigabit)
- Cabling Design Considerations and Challenges
 - Duplex/Serial
 - Parallel Optics
- Questions
The Need for Speed

- Rapid growth of server, network, and internet traffic
- Higher density requirements in the data center
- Low cost optical fiber Ethernet/SAN solutions
- Advances in technologies now allow the specification of the new 40/100/400G physical layer with reduced lane count and complexity... *Lower cost results!*
- 32/64/128 Gigabit Fiber Channel
Data Center Market Dynamics

Need for Higher Speed Interfaces

Bandwidth requirements for computing, core and storage networking require different data rates for next generation Ethernet & FC networks:
- 40 Gb/s Ethernet interface - Servers, high performance computing clusters, blade servers, storage area networks and network attached storage
- 100 Gb/s Ethernet interface - Core network switching, routing, and aggregation in data centers, internet exchanges and service provider peering points for high bandwidth applications such as video-on-demand
- >16G F Channel interface
 - *Base2 used throughout all applications for Fiber Channel infrastructure and devices. Each maintains backward compatibility with two previous generations
 - **Base10 commonly used for ISLs, core connections, and other high speed applications demanding maximum bandwidth

Source: IEEE P802.3ba Task Force
Data Center Trends: Data Rates

New Global Market Conditions/Challenges

• Newer network designs require more transmission media to enable scalable and higher density solutions

• Large Enterprise DCs are challenged to deal with significant transitions in the market to higher speed and longer reach channels

• Seamless infrastructure migration plans are necessary as data center port speeds are increasing
 (10Gb to 40Gb to 100Gb/s)(16Gb to 32Gb to 128Gb/s)
New Global Market Challenges

• Data center size continues to grow
1. Mega Data Centers will drive growth in market
• MMF/VCSEL solution will continue seeing pressure from competing
1. SMF/Long wavelength laser solutions
• VCSEL/MMF solutions offer several advantages worth preserving
1. Lowest energy consumption
2. Dust/debris immunity at connections (robust operation, MACs)
3. Support break-out via parallel optics (vs. WDM breakout)
4. Large installed base (>80% of DC fiber media)
• Benefits preserved for the bulk of 100G/128GFC/400G/512G channels by supporting 100m reach (even in break-out implementations)
 – using 4x parallel solutions

Source: BICSI
The Optics

OFL (Overfilled Launch)
- LEDs, not lasers
- Power distributed over 100% of the fiber core
- PRE 1 GIG Transceivers

EMB (Effective Modal Bandwidth)
- VCSELs
- Power distributed in a narrow region
- More accurate indication of performance in high-speed laser-based systems

Different VCELS fill a different set of modes in each fiber, which can affect pulse spreading.
Transceiver OEM Trends

- **Support of Installed Base**: Support for 16GFC, 32GFC, 40GbE, 100GbE, 128GFC and beyond on the existing installed MMF fiber plant.

- **Shortwave WDM (SWDM)**: The ability to multiplex multiple lanes onto a single fiber to reduce the fiber count and enable duplex-LC interfaces for 40GbE, 32GFC, 100GbE, 128GFC and beyond.

- **Lane rates > 25 Gb/s**: Developing and standardizing technology that enables multimode VCSELs to operate at 50 Gb/s and beyond, to enable future generations of both single-lane and multiple lane optical interfaces.

- **Wideband MMF**: Support for the definition and standardization of wideband multimode fiber to enable WDM transmission over links that are greater than 300m.

Source: Finisar
Next Generation Data Rates - Prepare Today, Avoid Upgrades Later

- **IEEE 802.3ba Standards**
 - OM3 glass support 40/100 gig speeds to 100 meters
 - OM4 glass support 40/100 gig speeds to 150 meters

- **IEEE 802.3bm Standards (Released 4-2015)**
 - 100GBase-SR
 - Transceiver speeds will jump from 10G per fiber to 25G
 - Duplex LC: Bi-Di and universal 40G Ethernet

- **IEEE 802.3bs Standards (In Committee 7-2015)**
 - 400GBase-SR; increase to 50G per fiber

- **Fiber Channel**
 - 32/64/128 Gigabit Fiber Channel
Fibre Channel Roadmap

1ₐGFC 2ₐGFC 4ₐGFC 8ₐGFC 16ₐGFC 32/128ₐGFC

The Optics

Non-standards based transceivers

• Bidi Technology over two fiber SFP

• “Universal” Optics – For SM & Legacy Cable Plant

• Parallel Singlemode Optics - 40GBASE-PLR4

• Embedded Optics Multispeed Ports
TIA TR-42.11 Optical Fiber Systems (Wide Band Multi-Mode)

- Support 4 or more wavelengths
- Possibly transmit 40G or 100G over a pair of fibers instead of four or ten pairs today

Bi-Directional Duplex SFPs

- BiDi – short for bidirectional
- 40G Ethernet over two fibers
- Allows use of existing LC infrastructure
- Uses Wavelength Division Multiplexing – 2 x 20 Gbps signals
Universal Optics - 40GBase-UNIV

- Addresses customer concerns around the reduced distances with 40GBASE-SR4
- Migrations from existing 10 to 40GbE networking without requiring a redesign or expansion of the fiber network
- Supports operation over a full 150 m of OM3 or OM4
- Can be used for up to 500 m and interconnected with both 40GBASE-LR4 and 40GBASE-LRL4
Parallel Single-Mode Optics - 40GBase-PLR4

- Parallel LR4 (PLRL4) supports distances compatible with 10GBASE-LR, (10km on SM fiber). ‘Lite’ Parallel LR4 (PLRL4) supports distances compatible with 10GBASE-LRL, (1km on SM fiber)
- Both modules can support 4 individual 10G-LR connections using a 4x10G mode and fiber breakout cables or cassettes for single mode fiber
- PLR4 and PLRL4 use an MTP-12 connector, and require an APC (Angle polished connector) single-mode MTP-12 cable
Embedded Optics Multi-Speed Ports (SR12)

12 Port MXP Triple-speed line card for Arista 7500E Series switch
Channel mapping for 24f MXP triple-speed port
Future 25G, 50G, and 100G Optics

<table>
<thead>
<tr>
<th>Data Rate</th>
<th>No. of Lane Pairs</th>
<th>Lane Rate</th>
<th>SW code (MMF)</th>
<th>LW code (SMF)</th>
</tr>
</thead>
<tbody>
<tr>
<td>25 Gb/s</td>
<td>1, 1</td>
<td>25 Gb/s</td>
<td>SR</td>
<td>LR</td>
</tr>
<tr>
<td>50 (＆40) Gb/s</td>
<td>1, 1</td>
<td>50 (＆40) Gb/s</td>
<td>SR</td>
<td>LR</td>
</tr>
<tr>
<td>100 Gb/s</td>
<td>2, 1</td>
<td>50 Gb/s</td>
<td>SR2</td>
<td>PSM2</td>
</tr>
<tr>
<td>100 Gb/s</td>
<td>1, 2</td>
<td>50 Gb/s</td>
<td>SWDM2</td>
<td>CWDM2</td>
</tr>
<tr>
<td>100 Gb/s</td>
<td>1, 1</td>
<td>100 Gb/s</td>
<td>FR</td>
<td></td>
</tr>
</tbody>
</table>

IEEE standards in **BOLD**: all other in *ITALICS* are proprietary

Bicsi
40G vs 50G Ethernet Deployment

- 40G Ethernet is now deployed in volume supported by 4x10G Parallel & WDM Transceivers
- Limited 40G Serial Transceiver deployment
- Limited 40G deployment using proprietary 2x20G ("BiDi")
- Future 40G & 50G Serial technology will be common
 40G Transceivers will likely be dual-rate 40/50G Transceivers
- 40G & 50G Serial Transceivers will have same cost:
 i.e. 50G will have 25% more bandwidth at same cost as 40G
- 50G Ethernet volume will quickly surpass 40G Ethernet volume because 25% more bandwidth will be "free"
- Total 40G Ethernet volume will plateau and decline
Existing 40G & 100G Optics

<table>
<thead>
<tr>
<th>Data Rate</th>
<th>No. of Lane Pairs</th>
<th>Lane Rate</th>
<th>SW code</th>
<th>LW code</th>
</tr>
</thead>
<tbody>
<tr>
<td>40 Gb/s</td>
<td>4 Fiber 1</td>
<td>10 Gb/s</td>
<td>SR4</td>
<td>PSM4</td>
</tr>
<tr>
<td>40 Gb/s</td>
<td>1 Fiber 4</td>
<td>10 Gb/s</td>
<td>SWDM4</td>
<td>LR4</td>
</tr>
<tr>
<td>40 Gb/s</td>
<td>1 Fiber 1</td>
<td>40 Gb/s</td>
<td>FR</td>
<td></td>
</tr>
<tr>
<td>100 Gb/s</td>
<td>10 Fiber 1</td>
<td>10 Gb/s</td>
<td>SR10</td>
<td></td>
</tr>
<tr>
<td>100 Gb/s</td>
<td>4 Fiber 1</td>
<td>25 Gb/s</td>
<td>SR4</td>
<td>PSM4</td>
</tr>
<tr>
<td>100 Gb/s</td>
<td>1 Fiber 4</td>
<td>25 Gb/s</td>
<td>SWDM4</td>
<td>LR4 CWDM4</td>
</tr>
</tbody>
</table>

IEEE standards in **BOLD**: all other in *ITALICS* are proprietary.
Future 200G and 400G Optics

<table>
<thead>
<tr>
<th>Data Rate</th>
<th>No. of Lane Pairs</th>
<th>Lane Rate</th>
<th>SW code</th>
<th>LW code</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gb/s</td>
<td>Fiber</td>
<td>λ</td>
<td>Gb/s</td>
<td>(MMF)</td>
</tr>
<tr>
<td>200</td>
<td>4</td>
<td>1</td>
<td>50</td>
<td>SR4</td>
</tr>
<tr>
<td>200</td>
<td>1</td>
<td>4</td>
<td>50</td>
<td>SWDM4</td>
</tr>
<tr>
<td>400</td>
<td>16</td>
<td>1</td>
<td>25</td>
<td>SR16</td>
</tr>
<tr>
<td>400</td>
<td>4</td>
<td>2</td>
<td>50</td>
<td>SR4.2</td>
</tr>
<tr>
<td>400</td>
<td>1</td>
<td>8</td>
<td>50</td>
<td>SWDM8</td>
</tr>
<tr>
<td>400</td>
<td>4</td>
<td>1</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>400</td>
<td>1</td>
<td>4</td>
<td>100</td>
<td></td>
</tr>
</tbody>
</table>

IEEE standards in **BOLD**: all other in *ITALICS* are proprietary
Take-Aways

• Standards Implementation of transceivers – multivendor support and interoperability for non-standards-based PMDs

• Wideband fiber, WDM, Bidi etc. are enablers of “customer-friendly” solutions that extend the lifetime of existing cable plant

• Breakout solutions for transceivers (BASE-4 ports) are most important for network scale in flat architectures (for both LAN & SAN)

• Network-ready status of cable plant for higher speeds and dark fiber can be mitigated by transceiver selection and the choice of cable plant
What happened to the 40G Ethernet standard?

- 100G Ethernet was first specified for core networking applications using forward looking 25G technology.
- 40G Ethernet was then added for cost sensitive Switch and Server applications using 4 lanes of existing 10G technology.
- Single lane 25G technology became more cost effective than 4 lanes of 10G technology.
- Single lane 50G technology is now in development and well enable low cost 50GbE offering more bandwidth than 40GbE.
Cabling for 40G and 100G Considerations

- Migration of existing cabling infrastructure or new install?

- How will DC infrastructure look or perform?
 - Direct Connect ISLs
 - Point to Point Cabling
 - Structured Cabling; Port replication
Optical Infrastructure

<table>
<thead>
<tr>
<th>Data Rate</th>
<th>1G</th>
<th>10G</th>
<th>40G</th>
<th>100G (10-lanes)</th>
<th>100G (4-lanes)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MTP-MTP backbone</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LC-LC Backbone</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IEEE STD</td>
<td>1000BASE-SX</td>
<td>1000BASE-LX</td>
<td>10GBASE-SR4</td>
<td>100GBASE-SR10</td>
<td>100GBASE-SR4</td>
</tr>
<tr>
<td>Transceiver Connector Type</td>
<td>LC</td>
<td>LC</td>
<td>12F MPO/MTP</td>
<td>24F MPO/MTP</td>
<td>12F MPO/MTP</td>
</tr>
</tbody>
</table>

![Star] = Requires **NO** Cabling Upgrade
![Red] = Requires adding 12/24 MTP® trunk cabling
Optical Infrastructure

- 40/100/400G will operate over both duplex and parallel optics

- The majority of 40/100G initial implementations will be 4x10G or 4x25G breakouts
 - Fiber Channel data rates of 64G and 128G will also be supported by 4x16G and 4x32G breakouts

- **MTP®-based cabling** is the **most** effective way to future-proof structured cabling for future technologies and implementations
Cabling Methodologies

Point-to-Point...

The wrong way...

Let’s look...
Point-to-Point: No Structure
History has shown (hundreds of visited data centers) that loss is based on the design, installation, and product choices.
Loss that needs to be avoided

Let’s Examine
The Results
dB Link Loss for Transmission

Loss budget... Scary?

<table>
<thead>
<tr>
<th>Year</th>
<th>Application</th>
<th>Data Rate</th>
<th>Standard</th>
<th>Loss Budget (dB)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1982</td>
<td>Ethernet</td>
<td>10 Mbps</td>
<td>IEEE 802.3</td>
<td>12.5</td>
</tr>
<tr>
<td>1991</td>
<td>Fast Ethernet</td>
<td>100 Mbps</td>
<td>IEEE 802.3</td>
<td>11.0</td>
</tr>
<tr>
<td>1998</td>
<td>Short Wavelength Fast Ethernet</td>
<td>10/100 Mbps</td>
<td>TIA/EIA-785</td>
<td>4.0</td>
</tr>
<tr>
<td>2000</td>
<td>1G Ethernet</td>
<td>1,000 Mbps</td>
<td>IEEE 802.3z</td>
<td>3.56</td>
</tr>
<tr>
<td>2004</td>
<td>8&10G FC & 10G Ethernet</td>
<td>10,000 Mbps</td>
<td>IEEE 802.3ae</td>
<td>2.60</td>
</tr>
<tr>
<td>2010</td>
<td>16G FC & 40G Ethernet</td>
<td>40,000 Mbps</td>
<td>IEEE 802.3ba</td>
<td>1.9</td>
</tr>
<tr>
<td>2010</td>
<td>100G Ethernet</td>
<td>100,000 Mbps</td>
<td>IEEE 802.3ba</td>
<td>1.5</td>
</tr>
</tbody>
</table>
dB Link Loss for Transmission

- The optical loss budget, a/k/a “channel insertion loss,” or “power budget” of the link, is a measure of signal power loss measured in decibels (dB).
- Link loss is a combination of the fiber attenuation related to the distance of the link and the connectors or splices in the link.

Critical! Understanding and “budgeting” potential link loss in a data center network is important:

For 16G Fiber Channel and IEEE802.3ba and bm

<table>
<thead>
<tr>
<th>Fiber Type</th>
<th>Distance Spec</th>
<th>Channel Loss</th>
<th>Connector Loss</th>
</tr>
</thead>
<tbody>
<tr>
<td>OM3</td>
<td>100 meters</td>
<td>1.9dB</td>
<td>1.5dB</td>
</tr>
<tr>
<td>OM4</td>
<td>150 meters</td>
<td>1.5dB</td>
<td>1.0dB</td>
</tr>
</tbody>
</table>
IEEE 802.3bm - OM3 versus OM4 Glass

Standard Specified Distances

<table>
<thead>
<tr>
<th></th>
<th>850 nm Ethernet Distance (m)</th>
<th>850 nm Fibre Channel Distance (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>10G</td>
<td>40G</td>
</tr>
<tr>
<td>OM3</td>
<td>300</td>
<td>100</td>
</tr>
<tr>
<td>OM4</td>
<td>400 / 550*</td>
<td>150</td>
</tr>
</tbody>
</table>

*Engineered Length ** 802.3ba10G/lane *** 802.3bm 25G/lane
IEEE 802.3bm - OM3 versus OM4 Glass

Migration to OM4

Thoughts on how to reduce cost

- Limit link distance to bare minimum requirement
 - Focus specifications on OM4 fiber
- Include simple EDC in the receiver to reduce the requirements on the transmitter
 - Single FFE/DFE filter could significantly reduce transmitter requirements

Fibre Channel (32G) and Ethernet (100G) utilized OM4 to define distance objectives

Transmission and Cable Standards recommend OM4

Bicsi®
In 2005, Infrastructure Standards for Data Centers...

TIA-942-A

- Site and space layouts
- Tiered reliability
- Environmental considerations
- Cabling infrastructure
TIA-942: Distributed Data Center Topology

Entrance Room
 - Analogy: “Entrance Facility”

Main Distribution Area (MDA)
 - Analogy: “Equipment Room”

Horizontal Distribution Area (HDA)
 - Analogy: “Telecom Room”

Zone Distribution Area (ZDA)
 - Analogy: “Consolidation Point”

Equipment Distribution Area (EDA)
 - Analogy: “Work Area”
 - Tier 3 Data Center!!!
Leaf and Spine

Source: Cisco
TIA-942: Distributed Data Center Topology
Interconnect dB Loss

The Industry Standard
EIA/TIA 568-C.3

LC **0.5dB/mated pair**
SC **0.5dB/mated pair**
MTP® **0.75dB/mated pair**
Proper Product Selection is Key

- MTP® cassette modules
- MTP® conversion modules
- Various density enclosures
- MTP®-MTP® multi-fiber trunks
- MTP® to LC conversion harness
Proper Product Selection Is Key

Port Replication

MTP* to LC conversion harness

Bicsi
Loss and Attenuation Performance

Standard Product : Max/Mated Pair

• LC 0.15dB/mated pair
• MPO/MTP®- 12F 0.20db/mated pair
• MPO/MTP®- 24F 0.35db/mated pair
Using QSFP-40G Universal Transceiver

Cablexpress Skinny Trunk 24f Harness; (MTP 24fiber) to (LC 24fiber)

OR

Cablexpress Skinny Trunk 12f Harness; (MTP 12fiber) to (LC 12fiber)

Cablexpress Skinny Trunk 24f to 144 FIBER Trunk; (MTP 24fiber) to (MTP 24fiber)

Cablexpress Skinny Trunk 12f to 144 FIBER Trunk; (MTP 12fiber) to (MTP 12fiber)

Arista 7500E-series

Arista 7500E-series

10G Fabric Inter-switch Links

Cablexpress Skinny Trunk 24f Jumper; (MTP 24fiber) to (MTP 24fiber) FEMALE OMS/OMF Trace

Arista 7500E-series

Arista 7500E-series

40G Fabric Inter-switch Links

Cablexpress Skinny Trunk 12f Jumper; (MTP 12fiber) to (LC 12fiber)

Cablexpress Skinny Trunk 24f Jumper; (MTP 24fiber) to (LC 24fiber)

Arista 7150-series

Arista 7150-series

100G Inter-switch Links

Direct Connect Cabling Option

Cablexpress Skinny Trunk 24f Jumper; (MTP 24fiber) to (MTP 24fiber)

Cablexpress Skinny Trunk 12f Jumper; (MTP 12fiber) to (LC 12fiber)

Arista 7500E-series

Arista 7500E-series

40G Fabric Inter-switch Links

Cablexpress Skinny Trunk 24f Harness; (MTP 24fiber) to (12 Duplex LCs)

Cablexpress Skinny Trunk 12f Harness; (MTP 12fiber) to (12 Duplex LCs)

Arista 7150-series

Arista 7150-series

10G Fabric Inter-switch Links

Cablexpress LC-MTP Cassette/Patch Panel

Arista 7500E-series

Arista 7500E-series

Bicsi
120G to 10G Module
Adapts the 24-port MTP® to 12 LC connectors at 10G each

- Enables the programmable 120G MXP port to be converted into (12) standards-based 10GBASE-SR LC connectors when using SR or SRL optics over multi-mode OM4 fiber infrastructure
- Backwards compatible with existing hardware
- In compliance with TIA-942 standard design
- Better utilization of rack space
- Industry leading mated pair losses allows structured cabling options
Infrastructure Design

CABExpress
Skinny Vanck
Harness
MTP-MTP A port
direct per
director

SAN A(4) 64 port Cards

SAN B(4) 64 port Cards

MTP-MTP A Filter
(2-1 PER 100)
A & B Ports

(6) 12 Port
2 MTP-2x12
MTP-LC
A & B Ports

CABExpress
Skinny Vanck
Harness
MTP-MTP A port
direct per
director

FAB A
RESERVED Space

FAB B
RESERVED Space

MTP-MTP A Filter
(2-1 PER 100)
A & B Ports

(6) 12 Port
2 MTP-2x12
MTP-LC
A & B Ports

(6) 12 Port
2 MTP-2x12
MTP-LC
A & B Ports

CABExpress
Skinny Vanck
Harness
MTP-MTP A port
direct per
director

Cabinets 2 feet

80 feet

190 feet

Note: Dimensions and distances are approximate and should be verified for specific installation requirements.
Thank You!

Rick Dallmann
• Senior Data Center Infrastructure Architect

CABLExpress

• rdallmann@cableexpress.com
• 315-430-9469