How to Optimize Intelligent Building Infrastructure

Todd Harpel — Berk-Tek
Kirk Krahn — Leviton Network Solutions
We will look at:

• The difference between Building Automation Systems and an intelligent building
• What defines a “smart building”
• Why you would want to make a building more intelligent
• A specific use case demonstrating the benefits of intelligent systems
• Where to find guidance on intelligent building network design
• Best practices for BIoT network deployment
• The future of the intelligent building network
The Beginnings of Automation

• Drebbel’s Circulating Oven
 • 1620’s Cornelis Drebbel
 • First self-regulating oven
 • One of the earliest examples of a “machine” taking over for human control

• First Building Automation Systems (BAS)
 • 1883 Warren Johnson
 • Invented a mechanical thermostat
 • It turned on a light telling the janitor to shovel more coal in the furnace
Traditional Automation Systems

1970s

1980s

1990s
Traditional Building Automation

Building Automation Control network (1995): a protocol that acts as an interpreter between different systems (HVAC, Fire Detection, Lighting, etc.)

Incorporated separate cabling for different kinds of building functions
What is an Intelligent Building?

• BAS ≠ Intelligent Building

• BAS is usually self contained – not always connected to the internet

• BAS systems primarily benefits building the owner/management.
 • Reduced energy consumption/cost
 • Reduced maintenance, etc.
Who Defines what an Intelligent Building is?

- “Green” buildings have standards and definitions
 - U.S. Green Building Council’s LEED system
 - Certified, Silver, Gold, Platinum apply regardless of building’s function

- “Smart” buildings don’t have this type of independent evaluation system

- Definitions vary according to your perspective
What is an Intelligent Building?

Intelligent Building Institute

“One which provides a productive and cost-effective environment through optimization of four basic elements: structure, systems, services and management, and the interrelationship between them.”

TIA

“Intelligent buildings now include technologies focused on enhancing systems interoperability to improve safety, security, functionality and productivity, energy efficiency, and resilience.”

Bicsi

“An intelligent building, or premise, utilizes communication technology to integrate building systems, allowing for intersystem connection and coordination that provides an environment which is safer, more comfortable, productive or efficient.”
What is an Intelligent Building?

Intelligent Building Institute

"One which optimizes cost, efficiency, and the internal environment.

Intelligent Interoperability

"Intelligent interoperability, efficiency, and the internal environment.

Intelligent Building Systems

"An intelligent building system, an environment.
Intelligent Buildings Put Simply

• Have sensors and devices that allow us to represent physical objects, systems, and spaces digitally

• Data collected by IoT devices give us the ability to optimize the function of the building’s systems and spaces

• There are many benefits to making a building more intelligent
Why Create a Smart Building?

<table>
<thead>
<tr>
<th>Economic</th>
<th>Social</th>
<th>Environmental</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Energy Efficiency</td>
<td>• Health and Wellbeing of Occupants</td>
<td>• Environmental Responsibility and Sustainability</td>
</tr>
<tr>
<td>• Reduced Operating Cost</td>
<td>• Safety and Security</td>
<td>• Resiliency</td>
</tr>
<tr>
<td>• Increased Productivity</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
One Use Case of an Intelligent Building System

Intelligent PoE Lighting
- Devices include LED troffers, switches, dimmers, controls
- Cat 5e 22 AWG cabling to support PoE power delivery
- Sensors in each fixture
 - Occupancy
 - Ambient Light
Capex benefits of Intelligent PoE Lighting

<table>
<thead>
<tr>
<th>PoE Powered Smart LED System</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fixtures ($300x250)</td>
<td>$75,000</td>
</tr>
<tr>
<td>PoE Switches</td>
<td>$19,800</td>
</tr>
<tr>
<td>Cabling Costs</td>
<td>$20,625</td>
</tr>
<tr>
<td>Installation Labor - Fixtures</td>
<td>$6,250</td>
</tr>
<tr>
<td>Installation Labor – Switches & Control System</td>
<td>$2,980</td>
</tr>
<tr>
<td>Commissioning (automatic)</td>
<td>$0</td>
</tr>
<tr>
<td>Total</td>
<td>$124,655</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>A/C Powered LED System</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fixtures ($210x250)</td>
<td>$52,500</td>
</tr>
<tr>
<td>Control System and Sensors</td>
<td>$32,000</td>
</tr>
<tr>
<td>Wiring Costs</td>
<td>$36,728</td>
</tr>
<tr>
<td>Installation Labor - Fixtures</td>
<td>$22,000</td>
</tr>
<tr>
<td>Installation Labor – Control Systems</td>
<td>$15,000</td>
</tr>
<tr>
<td>Commissioning</td>
<td>$6,750</td>
</tr>
<tr>
<td>Total</td>
<td>$164,978</td>
</tr>
</tbody>
</table>

Based on 20,000 sq. ft. installation
OpEx benefit of Intelligent PoE Lighting

Energy Consumption

- LED Retrofits offer energy savings of 27% to 29%*

- Intelligent PoE lighting systems have demonstrated as much as 80% savings

Sensors and Analytics

- Improvements in space utilization can deliver cost avoidance savings

Linear LED Lighting Retrofits, General Services Admin, 2016
Hidden Benefits of Smart Buildings

• $3 – $30 – $300 Rule of thumb in Real Estate
 • $3/ft2 for Utilities
 • $30/ft^2$ for Rent
 • $300/ft^2$ for People

• Smart buildings have been shown to increase employee productivity
 • Smart lighting systems with built-in occupancy and ambient light sensors contribute to this

• Productivity gains account for 75% of the benefit of BIoT*
• Energy Savings account for another 14%

*McKinsey – Unlocking the Potential of the Internet of Things
Smart Building Device Market Growth

- Commercial Office connected device market to be over 4 Billion units by 2021
- CAGR is >10% in Commercial Real Estate
- Includes both wired and wireless devices
Intelligent Buildings Take Planning

• Define objectives and desired outcomes

• Must include all stakeholders

• Identify system and function “owners”
The Internet of Things in Smart Commercial Buildings

2018 - v3.0

Key to symbols
- TECHNOLOGY/SERVICE TYPE
- DATA EXCHANGE
- SMART CITY DATA INTERCHANGE

Key to lines
- THE BUSINESS ENTERPRISE
- PEOPLE
- SECURITY
- ENERGY
- LIGHTING & SIGNAGE
- FACILITIES

How Data is Connected
- TCP/IP
- Wi-Fi
- Bluetooth
- BACnet
- MoDBus
- KNX
- LONWorks
- DALI
- ENOcean
- Z-Wave
- RFID
- CRMS
- ERP
- Human-Sensor Networks
- Wearables
- Peak Load Shaving/Dynamic Pricing
- Demand Response
- Access Control
- Video Surveillance
- Blockchain

Cloud

IoT Smart City Applications

Emissions & Air Quality

Emergency Management

Energy Management

HVAC

Lighting

Energy Storage

CRM

ERP

LED & General Lighting

Point of Sale

Fire Detection & Extinguishing

Asset Management

Predictive Maintenance

Big Data

Smart Parking

Smart City Transportation

Smart City Water Solutions

Smart City Air Quality Monitoring

HR/Time & Attendance

Transportation

Cloud

Video Surveillance

IoT Smart City Applications

Bicsi Fall Conference & Exhibition
The Nervous System of the Building

• Intelligent buildings require a network to connect:
 • The data input devices
 • The actuators, switches, system controls
 • The intelligent system (software) that can take action based on the inputs

• Today more and more systems are being adapted to, or running on, an Ethernet network
Building Internet of Things (BIoT) Network Design

• Plan for maximum useful life of network infrastructure
 • Enterprise Network –
 ✓ Technology upgrades every 3 – 5 years
 • Building Facilities –
 ✓ System upgrades and replacements 10+ years

• BIoT cabling infrastructure must support devices over a longer period of time
Cabling Standards for Intelligent Buildings

- **ANSI/TIA-862-B-2016**: Standard for Structured Cabling Infrastructure for Intelligent Building Systems
- **EN 50173-6:2018**: Information Technology – Generic Cabling Systems – Part 6: Distributed Building Services
- **ISO/IEC 11801-6**: Information Technology – Generic Cabling Systems – Part 6: Distributed Building Services
Concerns for the BIoT Network Designer

• Support for many different systems and services with various bandwidth requirements

• Support for various levels of power delivery – PoE

• Pre-planning for deployment of BIoT devices
The Smart Building Ecosystem

• Enterprise Business Network
• Voice over IP
• WiFi
• IP Surveillance Systems
• Digital Signage
• Access Control
• Lighting
• HVAC Control
Intelligent Building Design Considerations

• Horizontal Cabling Systems Planning
 • 2 - Telecommunications Outlets (TO) per work area – Enterprise LAN

• Additional **Service Outlets** for intelligent building devices - also referred to as Equipment Outlets (EO)

Office diagram courtesy of BICSI 007 Intelligent Building standard
Planning the Smart Building Cabling Systems

• TIA 862-B recommends a minimum of one dedicated link per intelligent building system device be provided to each Service Outlet

• Intelligent Building network designers may not know how many devices or systems will be connected in any given area
Commercial Office Service Outlet Coverage Area

- Building device coverage area* = 270 ft²
- Service Outlet coverage area* = 360 ft²

- Plan for multiple devices (services) per SO coverage area

*BICSI 007 and TIA 862-B
BIoT Cabling Best Practice – Zone Cabling

• Use **Zone Cabling** architecture where one Horizontal Connection Point (HCP) can service 4 to 5 Service Outlet coverage areas

• Estimate that each HCP supports $\approx 15,000 \text{ ft}^2$
 • Should have 56 ports minimum
 • Recommend 72 ports to support future growth
 • Or – estimate one BIoT device for every 208 ft2
 • Average Cubicle size was 75 ft2 in 2010
 • In 2017 cubicles were an average of 25 to 36 ft2*

BIoT Cabling Configuration Options

- Still uses Star Wiring
- Coverage Area cable may be direct attach or through an outlet and cord
- HCP location mounted permanently in an “accessible” area
An Example...
An Example...
An Example...
Cabling It All
Rack Space Requirements

Data | A/V | WAP

- 192 ports for Data, A/V, WAPs
- Total of 48 RU for interconnect topology
- Two racks are needed

<table>
<thead>
<tr>
<th>Application</th>
<th>RU Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>(4) – 2U - 48-port panel</td>
<td>8</td>
</tr>
<tr>
<td>(4) – 1U - 48-port PoE switch, 30W PoE+</td>
<td>4</td>
</tr>
<tr>
<td>(10) → Horizontal Cable Managers</td>
<td>20</td>
</tr>
<tr>
<td>(1) Uninterrupted Power Supply (UPS)</td>
<td>7</td>
</tr>
<tr>
<td>Servers & Storage</td>
<td>9</td>
</tr>
<tr>
<td>Total</td>
<td>48</td>
</tr>
</tbody>
</table>
Add Security & Access Control Applications
Add PoE Lighting
Rack Space Requirements
Intelligent Building Systems

<table>
<thead>
<tr>
<th>Application</th>
<th>RU Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>(6) 48-port panel</td>
<td>12</td>
</tr>
<tr>
<td>(10) 24-port PoE switch, 60W PoE++</td>
<td>10</td>
</tr>
<tr>
<td>(16) Cable Managers</td>
<td>32</td>
</tr>
<tr>
<td>Uninterrupted Power Supply (UPS)</td>
<td>7</td>
</tr>
<tr>
<td>Servers</td>
<td>4</td>
</tr>
<tr>
<td>Total</td>
<td>63</td>
</tr>
</tbody>
</table>

- Lighting adds 223 ports
- Security, Access Control adds 24 ports
- Additional 63 RU space needed
Total Rack Space Requirements

<table>
<thead>
<tr>
<th>Application</th>
<th>RU Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>(10) 48-port panels</td>
<td>20</td>
</tr>
<tr>
<td>(10) 24-port PoE switch, 60W PoE++</td>
<td>10</td>
</tr>
<tr>
<td>(4) – 1U - 48-port PoE switch, 30W PoE+</td>
<td>4</td>
</tr>
<tr>
<td>(26) Cable Managers</td>
<td>52</td>
</tr>
<tr>
<td>(2) Uninterrupted Power Supplies (UPS)</td>
<td>14</td>
</tr>
<tr>
<td>Servers and Storage</td>
<td>11</td>
</tr>
<tr>
<td>Total</td>
<td>111</td>
</tr>
</tbody>
</table>

- All Cabling terminated in center rack
- Color Coding of ports and patch cords by application/service
- PoE Switches for lighting housed in their own rack with dedicated UPS
Telecommunications Room Size Requirements

<table>
<thead>
<tr>
<th>Application</th>
<th>Switch Ports</th>
<th>Panel Ports (Interconnect)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data/WAP</td>
<td>127</td>
<td>127</td>
</tr>
<tr>
<td>A/V</td>
<td>12</td>
<td>12</td>
</tr>
<tr>
<td>Security/BAS</td>
<td>31</td>
<td>31</td>
</tr>
<tr>
<td>Lighting</td>
<td>223</td>
<td>223</td>
</tr>
<tr>
<td>Total</td>
<td>393</td>
<td>393</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Standard</th>
<th>Port Range</th>
<th>Room Size m (ft)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ANSI/TIA-569-D</td>
<td>200-800</td>
<td>6m x 6m (20ft x 20ft)</td>
</tr>
<tr>
<td>ISO/IEC 14763-2</td>
<td>Up to 500</td>
<td>3.2m x 3.4m (10.5ft x 11.1ft)</td>
</tr>
</tbody>
</table>
Choosing the Right Cabling
Bandwidth and Power Needs

Digital Building Applications

- WAPs
- Digital Signage
- Lighting
- Security Cameras
- Building Automation
- Access Control
- Clocks
- Sensors
High Bandwidth, High Power

Recommendation: Category 6A System
High Power, High Bandwidth
Cat 6A Cable Advantages

- Lower costs by supporting higher power per cable, avoiding additional bundles and trays
- 23 AWG conductors generate less heat than 24 AWG
 - 23 AWG is larger in diameter than 24 AWG
- Discontinuous Metallic Shield
 - Dissipates heat more effectively than UTP designs
 - Cooler temp maintains cable integrity and lifespan
 - Reduced OPEX, less facility cooling required
High Power, High Bandwidth
Cat 6A Connectivity Advantages

- Shielded and solid metal bodied UTP Cat 6A connectors dissipate heat better than plastic alternatives
PoE Arcing Damage Protection Retention Force Technology® (RFT)

- PoE Optimized Tine Geometry
 - Specifically engineered tine shape and plug interface
 - Prevents arcing damage in contact zone between the plug and connector

Arcing occurs away from contact zone

Plug fully engaged in connector

Plug at point of disconnect
High Power, Low Bandwidth

- Primary Concerns
 - Support for speeds of up to 1 Gbps
 - Pathway Design and Cable Installation
 - Temperature Rise
 - Contact Pitting
 - Power Delivery Efficiency

PoE Lighting
High Power, Low Bandwidth

Recommendation: Cat 5e High PoE System

• Metal Clad Cat 5e UTP Jack
 • Retention Force Technology

• 22 AWG Cat 5e Cable
 • Lower DC resistance
 • Efficient Power Delivery
 • No Bundle Size Restrictions
Low Bandwidth, Low Power

Recommendation: Category 6 System

- Bandwidth supports many BIoT systems
- Power levels not subject to bundle size restrictions
The Future of BiOT Cabling

• Single-Pair Ethernet Draft Standards
 • IEEE 802.3cg — 10Mb/s over single pair cable
 • IEEE 802.3bu — Power over Data Lines (PoDL) for SPE PoE

• Draft TIA 568.5 — Single Balanced Twisted-Pair Telecommunications Cabling and Components Standard

• ANSI/TIA-568.0-D-2 Draft — Single Balanced Twisted-Pair Use Cases and Topology

• ANSI/TIA-862-B-2 Draft — Single Balanced Twisted-Pair Use Cases and Topology
The Future of BIoT Cabling

• 802.3cg has two reach specifications
 • 10BASE-T1S — 15m
 • 10BASE-T1L — 1000m

• TIA 568.5 draft standard specifying cable and channel requirements for 15m, 40m, 400m, 1000m
 • 15, 40m reach targeted for automotive or industrial networks – Annex
 • 1000m, 400m reach targeted to support 10BASE-T1L

• Opportunities for 10BASE-T1L in the BIoT space especially for the 400m reach
The Future is Bright for BIoT

• Growth of intelligent device deployment is forecasted to accelerate

• Benefits of intelligent buildings go beyond simple energy savings

• New standards for BIoT network deployment provide guidance for better planning

• Berk-Tek has the right cabling products to support every intelligent device you want to deploy
Thank You

Questions?