Chapter 1
Introduction to Outside Plant

Chapter 1 offers an overview of outside plant (OSP) fundamentals. An introduction to standardization and valuable resources for the OSP designer are also included in this chapter.
Table of Contents

Introduction to Outside Plant (OSP) ... 1-1

About Outside Plant (OSP) .. 1-1

Outside Plant (OSP) Designer .. 1-2

Overview ... 1-2
Professionalism .. 1-2
Industry-Related Organizations .. 1-2
Other Valuable Sources .. 1-2

Standardization .. 1-4

Codes, Standards, and Methodology 1-4
Planning ... 1-5
Work Prints ... 1-6
Right-of-Way .. 1-6
Pathways and Spaces .. 1-7
Cabling ... 1-7
Introduction to Outside Plant (OSP)

WARNING: Outside plant (OSP) is inherently dangerous. This manual does not address safety issues associated with its use. BICSI® shall not be liable to the purchaser or any other entity with respect to any liability, loss, or damage caused directly or indirectly by the application or use of this manual.

It is the responsibility of the user of this manual to:

- Determine and use the applicable local safety and health practices associated with OSP.
- Determine the applicability of all regulatory agencies.

No project is so important or completion deadline so critical to justify nonconformance with industry codes, standards, and regulations.

About Outside Plant (OSP)

Telecommunications OSP cabling began with the placement of the first telegraph system, which consisted of wires linking two stations. From this simple beginning, OSP has expanded into a vast global telecommunications infrastructure.

The majority of OSP facilities are designed, installed, and maintained by local access providers (APs) serving specific geographic areas. However, OSP facilities located on private properties or in areas not covered by a local AP become the customer’s responsibility. To support the needs of the local APs, many private companies offer OSP design, engineering, and construction services.

In some countries, the AP (the provider of the physical connection) is also the service provider (SP [the provider of the desired service]) and can be the same company.

BICSI defines OSP as the telecommunications infrastructure that is designed and installed externally to buildings and typically routed into an entrance facility (EF).

OSP may include:

- Optical fiber cabling.
- Balanced twisted-pair cabling.
- Coaxial cabling.
- Supporting structures required to link serving facilities to outlying locations and enable voice, data, video, and other low-voltage systems.
Outside Plant (OSP) Designer

Overview

Telecommunications deregulation gives independent contractors access to OSP contracts and creates opportunities for qualified OSP designers in today’s open and competitive market.

An OSP designer is responsible for designing the interbuilding cabling and EF infrastructure and the termination of the OSP cabling. An OSP designer should have knowledge of the following OSP aspects:

• Pathways and spaces
• Cabling (cable and connecting hardware)
• Bonding and grounding (earthing)
• Right-of-way
• System documentation
• Codes and standards

Advances in technology and high levels of technical expertise in all aspects of the information technology systems (ITS) industry have increased the importance of training. Based on current standards for OSP network design, the methodology presented in this manual provides a useful reference for those seeking design assistance or training.

Professionalism

Keeping up with professional developments requires an OSP designer’s commitment. A competent OSP designer must possess both management and business skills to be able to monitor the design and construction of an OSP project. Some of the items that should be considered are addressed below.

Industry-Related Organizations

To stay current, an OSP designer should maintain a membership or certification in one or more industry-related organizations. More information on these organizations is included in Appendix A: Codes, Standards, Regulations, and Organizations.

Other Valuable Sources

The Internet is also a valuable source of real-time information. An OSP designer can research topics of particular interest and sign up for online services that periodically send updated information to the OSP designer’s e-mail address.

Many training companies specialize in continuing education for telecommunications. OSP designers can take advantage of training courses to stay current or to expand their knowledge of the ITS industry.
Other Valuable Sources, continued

Attending professional meetings and conferences is a valuable networking tool that allows an OSP designer to learn about the latest changes in the industry and to meet others with the same concerns.

Governmental regulations affect an OSP designer’s work. An OSP designer can stay well informed and learn about changes in regulations by reading articles in periodicals or accessing the government’s Web sites. By understanding all of the available options, an OSP designer can provide customers with the optimum systems available.
Standardization

OSP networks may differ because of:
- Topography.
- Climate.
- Choice of cabling.
- Economics.
- Local code requirements.
- Network functionality.
- Current and future types of supported equipment.
- Customer requirements.

The specifics of telecommunications infrastructure may be unique; however, overall OSP network components and the methods used to complete and maintain installations are relatively standard. Standardizing cabling installations is necessary to ensure successful performance of increasingly complex arrangements.

Standards are beneficial because they:
- Promote design and installation consistency.
- Impose conformance to physical and transmission line requirements.
- Provide a structured telecommunications facility that enables efficient system expansion and other changes.
- Provide for uniform documentation.

Codes, Standards, and Methodology

Building codes and standards regulate construction in most of the world. Codes and standards encompass most aspects of the construction industry. Installation methods, materials, and electrical products must conform to local code requirements.

The purpose of codes is to protect life, health, and property. Codes are normally enforced by a local authority having jurisdiction (AHJ).
Codes, Standards, and Methodology, continued

While codes address minimum safety requirements, standards are intended to ensure system performance by providing installation requirements and guidelines.

In general, standards are established as a basis to compare, measure, or judge:

- Capacity.
- Quantity.
- Content.
- Extent.
- Value.
- Quality.

The use of the terms shall and should in standards affects the way the stated tasks are accomplished. These terms are defined as:

- Shall—A mandatory requirement.
- Should—A recommendation.

Independent organizations specialize in establishing, certifying, and maintaining these codes and standards.

Methodology is the implementation of practices and procedures employed within a particular industry. Installation manuals are examples of methodology.

Planning

Planning the construction of an OSP network may require:

- Completing a needs assessment.
- Determining the capacity of an existing network.
- Calculating transmission requirements.
- Coordinating with APs, local authorities, and utility companies.
- Ensuring compliance with safety regulations and practices.
- Determining the need for right-of-way.
- Selecting the physical topology.
- Selecting a route.
- Selecting the desired cable type.
- Preparing and sending a request for information (RFI) and evaluating the responses.
Work Prints

After making planning decisions, construction drawings and specifications must be generated. They typically consist of:

• A plan view of the area showing obstacles, control points, and other utilities.
• Notification of known hazardous conditions.
• Measurements for facility placement.
• Right-of-way limits.
• Support structures, including:
 – Conduit sizes and profile views of proposed routing.
 – Maintenance holes (MHs).
 – Handholes (HHs).
 – Poles, support strands, and guying information.
• Media, including:
 – Cable sizes, types, and gauges.
 – Cable identification and pair/strand counts.
 – Direction of cable placement.
 – Reel identifications for cables.
• Protection, including:
 – Overvoltage and overcurrent protection systems.
 – Bonding and grounding (earthing) plans.

Right-of-Way

If an OSP network is going to extend beyond the property owned or controlled by the customer:

• Leased lines from the AP may be obtainable.
• A franchise may be purchased.
• The need for right-of-way arises.

To continue an OSP network outside the boundaries of a customer’s property, the customer must either buy the strip of land or obtain written permission:

• To attach to a utility provider’s pole line.
• To use a utility provider’s conduit.
• From the AHJ to use public right-of-way or other AP or utility easements.
• From private parties to use their land.
Pathways and Spaces

The basic types of OSP pathways and spaces are:

- Underground.
- Direct-buried.
- Aerial.

Underground pathways and spaces consist of:

- Conduit.
- MHs.
- HHs.
- Utility tunnels.
- Pedestals and cabinets.
- Vaults.

Direct-buried pathways and spaces consist of:

- Trenches for direct-buried cable.
- Pedestals and cabinets.

Aerial pathways and spaces consist of:

- Poles.
- Support strands (e.g., messengers).
- Anchors.
- Guys.

All of these pathways and spaces may be involved when installing wireless components (e.g., towers, masts, support structures).

NOTE: Refer to Chapter 11: Special Design Considerations. Also see the latest edition of BICSI’s Wireless Design Reference Manual for more information.

Cabling

Cable selection depends on the customer’s needs. OSP cabling can consist of one or more of the following cables:

- Optical fiber
- Balanced twisted-pair
- Coaxial

OSP cables are specifically designed for one or more of the following installation types:

- Underground
- Direct-buried
- Aerial (e.g., lashed, self-supporting)
Index

V

vault
 closure ... 5-3
 controlled environment 4-231
 expansion ... 11-24
 overview ... 4-200, 4-227
 vertical down lead 6-8

W

work print
 design development 8-10
 drawing examples 8-26
 overview ... 1-5
 wye power system 6-9