Table of Contents

Chapter 1: Principles of Transmission

- Metallic Media .. 1-1
- Electrical Conductors ... 1-2
- American Wire Gauge (AWG) 1-6
- Insulation .. 1-6
- Balanced Twisted-Pair Cables 1-9
- Environmental Considerations 1-10
- Cable Shielding .. 1-13
- Drain Wires ... 1-16
- Analog Signals .. 1-17
- Telephony ... 1-23
- Digital Signals .. 1-29
- Types of Transmission Circuits 1-39
- Asynchronous and Synchronous Transmission 1-40
- Digital Hierarchy ... 1-41
- Video Transmission ... 1-46
- Transmission Line Concepts 1-48
- Balanced Twisted-Pair Performance 1-57
- Balanced Twisted-Pair Channel Performance 1-58
- Balanced Twisted-Pair Permanent Link Performance 1-62
- Balanced Twisted-Pair Applications 1-63
- Optical Fiber ... 1-78
- Optical Fiber Transmitters 1-79
- Optical Fiber Receivers .. 1-88
- Optical Fiber Medium .. 1-89
- Bandwidth ... 1-91
- Optical Fiber Applications Support Information 1-103
- Verifying Optical Fiber Performance and Electronics Compatibility .. 1-105
- Selecting an Optical Fiber Core Size to Application or Original Equipment Manufacturer (OEM) Specifications .. 1-116
- Synchronous Optical Network (SONET) and Synchronous Digital Hierarchy (SDH) Concepts .. 1-116
- Appendix ... 1-121
Table of Contents

Chapter 2: Electromagnetic Compatibility
- Electromagnetic Compatibility (EMC) .. 2-1
- Electromagnetic Spectrum .. 2-2
- Electromagnetics ... 2-6
- Measuring Electromagnetic Compatibility (EMC) 2-9
- Electromagnetic Interference (EMI)—A Problem 2-12
- Electromagnetic Compatibility (EMC)—The Solution 2-15
- Electromagnetic Interference (EMI) and Cabling 2-18
- Electromagnetic Qualification Parameters 2-19
- Unwanted Signals ... 2-24
- Grounding (Earthing) ... 2-27
- Minimizing Electromagnetic Interference (EMI) 2-35
- Considerations for Electromagnetic Compatibility (EMC) in Cabling Systems ... 2-36
- Interference Reduction in Shielded Rooms 2-42
- Telecommunications Cabling within Joint-Use Tunnel 2-44

Chapter 3: Telecommunications Spaces
- Telecommunications Spaces .. 3-1
- Telecommunications Spaces Considerations 3-1
- Telecommunications Rooms (TRs) and Telecommunications Enclosures (TEs) ... 3-18
- Telecommunications Room (TR) and Telecommunications Enclosure (TE) Applications ... 3-19
- Telecommunications Room (TR) Design 3-21
- General Requirements for All Telecommunications Enclosures (TEs) ... 3-26
- Equipment Rooms (ERs) ... 3-28
- Equipment Room (ER) Design ... 3-30
- Locating the Equipment Room (ER) 3-32
- Space Allocation and Layout .. 3-37
- Cable Installation and Pathways ... 3-42
- Electrical Power ... 3-45
- Heating, Ventilation, and Air-Conditioning (HVAC) Environmental Control .. 3-48
- Miscellaneous Considerations ... 3-50
- Design Approval, Buildout, and Final Inspection 3-50
- Entrance Facilities (EFs) .. 3-52
Chapter 4: Backbone Distribution Systems

- Backbone Distribution Systems ... 4-1
- Cabling Topologies .. 4-3
- Hierarchical Star Campus Backbone Designs .. 4-24
- Telecommunications Rooms (TRs) and Telecommunications Enclosures (TEs) ... 4-31
- Building Backbones .. 4-32
- Choosing Media .. 4-38
- Backbone Building Pathways (Internal) ... 4-41
- Miscellaneous Support Facilities ... 4-47
- Bonding and Grounding (Earthing) .. 4-49
- Backbone Planning .. 4-49
- Indoor Hardware ... 4-51
- Ethernet in the First Mile (EFM) ... 4-53

Chapter 5: Horizontal Distribution Systems

- Horizontal Distribution Systems ... 5-1

SECTION 1: HORIZONTAL CABLEING SYSTEMS

- Horizontal Cabling Systems ... 5-5
- Horizontal Cabling Media .. 5-17
- Work Areas and Open Office Cabling .. 5-20
- Simultaneous Data and Power Transmission within Horizontal Cabling ... 5-37
- Centralized Optical Fiber Cabling .. 5-44
- Fiber-To-The-Outlet (FTTO) ... 5-48
- Horizontal Pathways for Fiber to the Office (FTTO) Systems 5-53
- Passive Optical Networks (PONs) ... 5-56

SECTION 2: HORIZONTAL PATHWAYS

- Horizontal Pathways .. 5-65
- Types of Horizontal Pathways ... 5-70
- Ceiling Distribution Systems ... 5-93
- Other Horizontal Pathways ... 5-110

SECTION 3: ADA REQUIREMENTS

- Americans with Disabilities Act (ADA) Requirements 5-117
- Appendix: Disabled Access and the Americans with Disabilities Act (ADA) 5-125
Table of Contents

Chapter 6: ICT Cables and Connecting Hardware
- ICT Cables and Connecting Hardware ... 6-1
- Balanced Twisted-Pair Cables .. 6-3
- Optical Fiber Cables .. 6-14
- Coaxial Cables ... 6-24
- Balanced Twisted-Pair Connectors ... 6-33
- Balanced Twisted-Pair Connecting Hardware 6-55
- Balanced Twisted-Pair Connecting Blocks 6-61
- Optical Fiber Connectors .. 6-77
- Optical Fiber Connecting Hardware 6-89
- Coaxial Connectors ... 6-95
- Coaxial Connecting Hardware ... 6-103

Chapter 7: Firestop Systems
- Firestop Systems ... 7-1
- Firestop and Disaster Avoidance ... 7-3
- Fire-Resistance Rated Construction .. 7-6
- Firestop Considerations ... 7-8
- Testing and Guidelines for Firestops 7-11
- Types of Firestop Systems .. 7-19
- Firestop for Brick, Concrete Block, and Concrete Walls 7-32
- Firestop for Framed Wall Assemblies 7-36
- Firestop for Lath and Plaster Walls 7-42
- Firestop for Combination Walls ... 7-42
- Firestop for Floor Assemblies ... 7-43
- Firestop for Floor/Ceiling Assemblies 7-44
- Structural Steel Floor Units with Concrete Floor Fill without Suspended Ceiling Membranes .. 7-47
- Firestop for Roof/Ceiling Assemblies 7-47
- Fire-Rated Vertical Shafts .. 7-48
- Firestop for Curtain Wall Floor/Ceiling Seals 7-49
- General Firestop Considerations .. 7-52
- Appendix A: Approved Firestop Methods 7-54
- Appendix B: Testing and Guidelines for Firestops 7-108

Chapter 8: Bonding and Grounding (Earthing)
- Bonding and Grounding (Earthing) ... 8-1
- Alternating Current (ac) Grounding (Earthing) Electrode System .. 8-5
- Equipment Grounding (Earthing) System 8-8
- Telecommunications Bonding Infrastructure 8-12
- Lightning Exposure ... 8-26
Table of Contents

Chapter 9: Power Distribution
- Power Distribution .. 9-1
- Alternating Current (ac) Power 9-2
- American Wire Gauge (AWG) 9-15
- Alternating Current (ac) Voltage Quality Problems 9-18
- Power Distribution for Information Technology Equipment (ITE) Spaces 9-25
- Electrical Safety ... 9-28
- Power System Redundancy .. 9-31
- Power Conditioning/Power Protection 9-36
- Direct Current (dc) Power 9-52
- Installation of Direct Current (dc) Systems 9-61
- Batteries ... 9-63
- Power System Alarms ... 9-72
- Power System Monitoring and Control 9-75
- Conductor Identification 9-77

Chapter 10: Telecommunications Administration
- Telecommunications Administration 10-1
- Identification Methods .. 10-12
- Identification Systems ... 10-23
- Labeling and Recordkeeping 10-31
- Administration of Large Telecommunications Spaces 10-39

Chapter 11: Field Testing of Structured Cabling
- Field Testing of Structured Cabling 11-1
- Balanced Twisted-Pair Cabling Tests 11-2
- Balanced Twisted-Pair Cabling Acceptance Tests 11-11
- Coaxial Cabling Testing ... 11-18
- Optical Fiber Cabling Tests 11-19
- Optical Fiber Cabling Acceptance Tests 11-22
- Optical Fiber Cabling Field Testing 11-24
- Maintenance and Troubleshooting for Optical Fiber Cabling 11-27
- Additional Optical Fiber Troubleshooting Tools and Equipment 11-28

Chapter 12: Outside Plant
- Outside Plant ... 12-1
- Telecommunications Service Entrances 12-6
- Underground Entrances .. 12-6
- Buried Entrances .. 12-9
- Aerial Entrances ... 12-10
- Other Telecommunications Service Entrance Considerations 12-15
- Terminating Space for Telecommunications Entrance Facilities 12-20
Terminating Conduit Inside a Building ... 12-22
Network Interface (NI) Locations ... 12-23
Outside Building Terminals (Pedestals and Cabinets) Pedestal Hardware
Mounted on Outside Walls .. 12-25
Direct-Buried Pathways ... 12-26
Trenches ... 12-28
Underground Pathways ... 12-32
Conduit Guidelines .. 12-33
Terminating Conduit at a Designated Property Line 12-38
Maintenance Hole Guidelines .. 12-39
Aerial Plant Pathways ... 12-46

Chapter 13: Audiovisual Systems

Audiovisual (AV) Systems ... 13-1
Fundamentals ... 13-2
Types of Signals .. 13-10
Environmental Considerations ... 13-30
Visual Display Systems ... 13-38
Program Audio and Speech Reinforcement Systems 13-43
Signal Distribution Systems ... 13-52
Audioconferencing Systems ... 13-54
Videoconferencing Systems ... 13-70
Control Systems ... 13-79
Overhead Paging Systems .. 13-82
Sound Masking Systems ... 13-92
Digital Signage Systems ... 13-96
Cable Television Distribution Systems 13-100

Chapter 14: Building Automation Systems

Building Automation Systems (BAS) ... 14-1
Building Automation Systems (BAS) Interfaces with Other Systems 14-6
Building Automation Systems (BAS) Communications Networks 14-17
Building Automation Systems (BAS) Electrical Characteristics 14-23
Table of Contents

Chapter 15: Data Networks
- Data Networks .. 15-1
- Open Systems Interconnection (OSI) Reference Model 15-4
- Network Hardware ... 15-8
- Network Software .. 15-14
- Network Supported Systems 15-15
- Network Design ... 15-19
- Computer Rooms .. 15-21
- Campus and Multisite Network Design 15-33

Chapter 16: Wireless Networks
- Wireless Networks .. 16-1
- Services and Applications 16-2
- Frequency and Wavelength 16-6
- Electromagnetic Spectrum 16-14
- Wireless System Design 16-22
- Selection of Technology 16-25
- Components of a Wireless System 16-28
- Distributed Antenna Systems (DAS) 16-38
- Personal Area Networks (PANs) 16-65
- Wireless LAN (WLAN) Technology 16-67
- Wireless LAN (WLAN) Components 16-69

Chapter 17: Electronic Safety and Security
- Electronic Safety and Security (ESS) 17-1
- Electronic and Electrical Door Hardware 17-8
- Video Surveillance ... 17-21
- Intrusion Detection .. 17-28
- Fire Detection and Alarm Systems (FDAS) 17-31
- Fire Alarm (FA) Notification 17-36
- Fire Alarm Control Panels (FACP) 17-39
- Digital Alarm Communicator System (DACS) 17-49
- Area of Refuge and Rescue Two-Way Communication Systems 17-56
- Mass Notification and Emergency Communications (MNEC) Systems 17-59
Table of Contents

Chapter 18: Data Centers
- Data Centers .. 18-1
- Data Center Redundancy and Availability 18-4
- Structured Cabling Hierarchy for Data Centers 18-9
- Guidelines for Telecommunications Cabling, Cable Containment, Equipment Racks, and Cabinets 18-16
- Data Center Security .. 18-24
- Operation, Ownership Costs, Environmental Impact, and Efficiency 18-30
- Data Center Planning Considerations 18-30

Chapter 19: Health Care
- Health Care .. 19-1
- Space and Pathway Requirements and Considerations 19-2
- Nurse Call Systems .. 19-10
- Code Call Systems ... 19-20
- Hospital Security .. 19-21
- Wireless Networks ... 19-24
- Audiovisual (AV) Systems 19-26
- Picture Archiving and Communication System (PACS) 19-28
- Patient Monitoring ... 19-28
- Radio Frequency Identification (RFID)-Based Systems 19-30
- Interactive Patient Entertainment and Education Systems 19-33
- Wayfinding and Signage .. 19-37
- Regulatory Bodies and Organizations 19-38

Chapter 20: Residential Cabling
- Residential Cabling ... 20-1
- Components ... 20-4
- Planning the Cabling System 20-19
- Rough-In Cabling .. 20-20
- Finish Cabling .. 20-22

Chapter 21: Project Administration and Execution

SECTION 1: PROFESSIONAL DEVELOPMENT
- Professional Development 21-1

SECTION 2: PROJECT MANAGEMENT
- Project Management .. 21-5
Table of Contents

SECTION 3: DISASTER RECOVERY PLANNING AND RISK MANAGEMENT
- Disaster Recovery Planning and Risk Management .. 21-63
- The Disaster Recovery Plan ... 21-67

Chapter 22: Special Design Considerations
- Special Occupancies .. 22-1

SECTION 1: MICE CONSIDERATIONS
- MICE Considerations .. 22-5

Appendix A: Codes, Standards, Regulations, and Organizations
- Codes, Standards, Regulations, and Organizations ... A-1
- International Codes and Standards ... A-6
- Regional Codes and Standards ... A-30
- National Codes and Standards ... A-42
- Enforcement of United States (U.S.) Building Codes, Standards, and Regulations .. A-74
- Wireless Transmission Standards ... A-77
- Approval of Electrical Products and Equipment ... A-81
- Regulations and Standards for Emissions and Immunity A-86
- Commercial Products Marketed in the United States (U.S.) A-86
- Radiation Limits for Class A and Class B ... A-87
- Emission Limits for Class A and Class B ... A-88
- Commercial Products Marketed Outside the United States (U.S.) A-88
- Electrostatic Discharge (ESD) ... A-93
- Network Interfaces and Demarcation Points in the United States (U.S.) A-93
- Definitions .. A-94
- Classifications .. A-94
- Groups ... A-94
- Types .. A-95
- Analog Voice Connectors ... A-96
- Analog Data Connectors ... A-116
- Network Channel Equipment Connectors .. A-134

Appendix B: Legal Considerations
- Legal Aspects of Information and Communications Technology (ICT) Design B-1

Glossary

Bibliography

Index
Figures

Chapter 1: Principles of Transmission

- **Figure 1.1** Calculated attenuation values for cables insulated with FEP, ECTFE, and PVC from 1 MHz to 135 MHz at 22 °C (72 °F) .. 1-11
- **Figure 1.2** Calculated and measured attenuation values for cables insulated with FEP, ECTFE, and PVC from 1 MHz to 135 MHz at 40 °C (104 °F) 1-12
- **Figure 1.3** Calculated and measured attenuation values for cables insulated with FEP, ECTFE, and PVC from 1 MHz to 135 MHz at 60 °C (140 °F) 1-12
- **Figure 1.4** Example 1 of a sinusoidal signal .. 1-17
- **Figure 1.5** Example 2 of a sinusoidal signal .. 1-19
- **Figure 1.6** IP telephony architecture .. 1-27
- **Figure 1.7** DS1 frame format .. 1-31
- **Figure 1.8** E1 frame format ... 1-32
- **Figure 1.9** Polar non-return-to-zero level ... 1-36
- **Figure 1.10** Bipolar AMI ... 1-36
- **Figure 1.11** Biphase Manchester .. 1-36
- **Figure 1.12** Two binary bits encoded into one quaternary (2B1Q) 1-36
- **Figure 1.13** MLT-3, also referred to as NRZI-3 .. 1-37
- **Figure 1.14** Composite video .. 1-46
- **Figure 1.15** Two-conductor transmission line ... 1-48
- **Figure 1.16** Resistive model ... 1-49
- **Figure 1.17** Capacitance model ... 1-49
- **Figure 1.18** Inductive model ... 1-50
- **Figure 1.19** Primary transmission line parameters 1-51
- **Figure 1.20** General transmission model ... 1-52
- **Figure 1.21** Example of a channel test configuration 1-58
- **Figure 1.22** Permanent link test configuration ... 1-62
- **Figure 1.23** Typical configuration of endspan and midspan power source equipment ... 1-77
- **Figure 1.24** Spectral profile comparison of laser and LED 1-80
- **Figure 1.25** Spectral width of an LED source showing full width half maximum .. 1-81
- **Figure 1.26** Numerical aperture ... 1-82
- **Figure 1.27** System bandwidth versus distance example 1-91
- **Figure 1.28** Pulse distortion because of rise time and data rate 1-93
- **Figure 1.29** Link bandwidth at 1300 nm using 62.5/125 micrometer multimode optical fiber .. 1-97
- **Figure 1.30** Core and coating ... 1-100
- **Figure 1.31** DSX optical multiplexing design .. 1-118
- **Figure 1.32** SONET multiplexing design ... 1-119
- **Figure 1.33** WDM ... 1-120
Chapter 2: Electromagnetic Compatibility

Figure 2.1 Electromagnetic spectrum ... 2-3
Figure 2.2 Dependence of the safe distance to EMI source on its power 2-10
Figure 2.3 Model T for a short wire channel 2-21
Figure 2.4 Surge test voltage waveform sample 2-23
Figure 2.5 CM versus DM .. 2-25
Figure 2.6 Ground loops in shielded cabling systems 2-28
Figure 2.7 Ground loop because of stray capacitance at high frequencies ... 2-29
Figure 2.8 Common impedance coupling interference 2-30
Figure 2.9 Field-to-cable and ground loop 2-31
Figure 2.10 Coupling reduction as function of grounding (earthing) practice ... 2-32
Figure 2.11 Higher frequency twist decrease 2-33
Figure 2.12 Typical power line filter ... 2-39
Figure 2.13 Isolation transformer scheme 2-40
Figure 2.14 Samples of ferrite toroids, beads, and sleeves 2-41
Figure 2.15 Balance concept ... 2-43
Figure 2.16 EMI susceptibility of circuits and systems connected through unshielded cables .. 2-45
Figure 2.17 Ground loop and EMI immunity 2-47

Chapter 3: Telecommunications Spaces

Figure 3.1 Typical cabinet and rack mounting hole spacing arrangements 3-15
Figure 3.2 Rack unit .. 3-15
Figure 3.3 Space considerations when sizing a telecommunications space 3-17
Figure 3.4 Typical TR layout .. 3-23
Figure 3.5 Typical sleeve/conduit .. 3-24
Figure 3.6 Typical shallow room layout 3-25
Figure 3.7 Typical AP ER ... 3-34
Figure 3.8 Typical ER layout .. 3-38

Chapter 4: Backbone Distribution Systems

Figure 4.1 Star topology ... 4-5
Figure 4.2 Hierarchical star topology .. 4-6
Figure 4.3 Ring topology (simplified) .. 4-8
Figure 4.4 Buildings connected by a physical ring topology 4-9
Figure 4.5 Main backbone ring and redundant backbone star combined 4-10
Figure 4.6 Physical star/logical ring topology 4-11
Figure 4.7 Clustered star topology with physical star/logical ring 4-12
Figure 4.8 Bus topology .. 4-13
Figure 4.9 Tree and branch topology .. 4-14
Figure 4.10 Fully connected mesh topology 4-15
Figure 4.11 Partially connected mesh topology ... 4-17
Figure 4.12 Point-to-multipoint optical topology .. 4-18
Figure 4.13 PTP optical fiber ... 4-19
Figure 4.14 PTP balanced twisted-pair topology .. 4-22
Figure 4.15 Typical backbone hierarchical star topology for multiple buildings on
a campus (inside and outside distribution) ... 4-24
Figure 4.16 Example of multiple hierarchical level campus backbone design 4-26
Figure 4.17 Levels of cross-connections .. 4-27
Figure 4.18 Logical bus topology ... 4-28
Figure 4.19 Logical ring topology implemented using a physical star topology . 4-29
Figure 4.20 Logical tree topology implemented using a hierarchical star topology .. 4-29
Figure 4.21 Star building backbone ... 4-33
Figure 4.22 Hierarchical star building backbone 4-34
Figure 4.23 Redundant routing for building backbone (HCS [FDs] not linked) 4-35
Figure 4.24 Example of combined optical fiber/balanced twisted-pair backbone
supporting voice and data traffic .. 4-36
Figure 4.25 ERs and AP cabling system interface cabling 4-37
Figure 4.26 Typical office building pathway layout 4-44
Figure 4.27 Typical sleeve and slot installations ... 4-45
Figure 4.28 EFM network boundaries ... 4-53

Chapter 5: Horizontal Distribution Systems

Figure 5.1 Typical horizontal cabling system elements 5-2
Figure 5.2 Horizontal cabling system channel ... 5-7
Figure 5.3 Horizontal cabling system channel model with four connection points . 5-8
Figure 5.4 Horizontal cabling system channel model with three connection points .. 5-9
Figure 5.5 Horizontal cabling system permanent link model with three
connection points ... 5-10
Figure 5.6 Example of connection by means of cross-connection 5-12
Figure 5.7 Example of connection by means of interconnection 5-13
Figure 5.8 Example of connection by means of cross-connection and
interconnection ... 5-14
Figure 5.9 Example of connection by means of double cross-connection 5-15
Figure 5.10 Total cable length in the horizontal cabling system channel 5-18
Figure 5.11 Pin/pair assignments ... 5-21
Figure 5.12 Typical dimensions for furniture opening for telecommunications
faceplate .. 5-24
Figure 5.13 Example of MUTOA application ... 5-26
Figure 5.14 CPs used in a combined furniture system and private office work
area environment .. 5-30
Figure 5.15 CPs located on all columns .. 5-33
Figure 5.16 CPs located in a space between the columns 5-34
Figure 5.17 CPs located in checkerboard order ... 5-35
<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.18</td>
<td>CPs located on columns close to the building core</td>
<td>5-36</td>
</tr>
<tr>
<td>5.19</td>
<td>Temperature versus wattage for category cable types</td>
<td>5-38</td>
</tr>
<tr>
<td>5.20</td>
<td>Insertion loss versus temperature for category cable types</td>
<td>5-39</td>
</tr>
<tr>
<td>5.21</td>
<td>Centralized optical fiber cabling</td>
<td>5-45</td>
</tr>
<tr>
<td>5.22</td>
<td>Traditional structured cabling LAN design compared with FTTO LAN</td>
<td>5-49</td>
</tr>
<tr>
<td>5.23</td>
<td>Traditional active Ethernet design compared with PON-based architecture</td>
<td>5-56</td>
</tr>
<tr>
<td>5.24</td>
<td>Underfloor conduit extended to individual telecommunications outlet boxes</td>
<td>5-70</td>
</tr>
<tr>
<td>5.25</td>
<td>Typical underfloor conduit system</td>
<td>5-71</td>
</tr>
<tr>
<td>5.26</td>
<td>Conduit bodies recommended for telecommunications cables</td>
<td>5-72</td>
</tr>
<tr>
<td>5.27</td>
<td>Recommended pull box configurations</td>
<td>5-82</td>
</tr>
<tr>
<td>5.28</td>
<td>Stringered access floor system</td>
<td>5-86</td>
</tr>
<tr>
<td>5.29</td>
<td>Recommended clearance for access floor spaces</td>
<td>5-88</td>
</tr>
<tr>
<td>5.30</td>
<td>Typical zoned ceiling (plan view)</td>
<td>5-96</td>
</tr>
<tr>
<td>5.31</td>
<td>Conduit-based ceiling zone (elevation view)</td>
<td>5-97</td>
</tr>
<tr>
<td>5.32</td>
<td>Rules of installation for discrete cable support facilities</td>
<td>5-99</td>
</tr>
<tr>
<td>5.33</td>
<td>Raceways and fittings</td>
<td>5-101</td>
</tr>
<tr>
<td>5.34</td>
<td>Attaching various utility columns</td>
<td>5-103</td>
</tr>
<tr>
<td>5.35</td>
<td>Perimeter raceway</td>
<td>5-112</td>
</tr>
<tr>
<td>5.36</td>
<td>Molding raceway</td>
<td>5-113</td>
</tr>
<tr>
<td>5.37</td>
<td>Side-reach telephones</td>
<td>5-121</td>
</tr>
<tr>
<td>5.38</td>
<td>Forward-reach telephones</td>
<td>5-122</td>
</tr>
<tr>
<td>5.39</td>
<td>International teletypewriter/text telephone symbol and volume control telephone symbol</td>
<td>5-124</td>
</tr>
</tbody>
</table>

Chapter 6: ICT Cables and Connecting Hardware

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.1</td>
<td>Balanced twisted-pair cable construction types</td>
<td>6-6</td>
</tr>
<tr>
<td>6.2</td>
<td>Examples of balanced twisted-pair cables</td>
<td>6-7</td>
</tr>
<tr>
<td>6.3</td>
<td>Multimode optical fiber</td>
<td>6-16</td>
</tr>
<tr>
<td>6.4</td>
<td>Singlemode optical fiber</td>
<td>6-17</td>
</tr>
<tr>
<td>6.5</td>
<td>Side view of a loose-tube optical fiber cable</td>
<td>6-19</td>
</tr>
<tr>
<td>6.6</td>
<td>Loose-tube furcating harness</td>
<td>6-19</td>
</tr>
<tr>
<td>6.7</td>
<td>Loose-tube optical fiber cable</td>
<td>6-20</td>
</tr>
<tr>
<td>6.8</td>
<td>Tight-buffered optical fiber cable, distribution construction</td>
<td>6-21</td>
</tr>
<tr>
<td>6.9</td>
<td>Tight-buffered optical fiber cable, breakout construction</td>
<td>6-22</td>
</tr>
<tr>
<td>6.10</td>
<td>Series-6 quad shield (screen) coaxial cable</td>
<td>6-24</td>
</tr>
<tr>
<td>6.11</td>
<td>Classification of cables and wires according to the NEC</td>
<td>6-30</td>
</tr>
<tr>
<td>6.12</td>
<td>110-style IDC connector design</td>
<td>6-34</td>
</tr>
<tr>
<td>6.13</td>
<td>Examples of 66-style connector designs</td>
<td>6-37</td>
</tr>
<tr>
<td>6.14</td>
<td>BIX-style IDC connector design</td>
<td>6-40</td>
</tr>
<tr>
<td>6.15</td>
<td>Examples of LSA-style connector designs</td>
<td>6-42</td>
</tr>
<tr>
<td>Figure</td>
<td>Description</td>
<td>Page</td>
</tr>
<tr>
<td>--------</td>
<td>--</td>
<td>------</td>
</tr>
<tr>
<td>6.16</td>
<td>8P8C unkeyed modular plug</td>
<td>6-45</td>
</tr>
<tr>
<td>6.17</td>
<td>8P8C modular plugs for stranded and solid conductors</td>
<td>6-46</td>
</tr>
<tr>
<td>6.18</td>
<td>8P8C modular jack</td>
<td>6-48</td>
</tr>
<tr>
<td>6.19</td>
<td>Modular jack design</td>
<td>6-48</td>
</tr>
<tr>
<td>6.20</td>
<td>Eight-position jack pin/pair assignments (front view)</td>
<td>6-49</td>
</tr>
<tr>
<td>6.21</td>
<td>50-position miniature ribbon connector</td>
<td>6-51</td>
</tr>
<tr>
<td>6.22</td>
<td>50-position miniature ribbon connector design</td>
<td>6-52</td>
</tr>
<tr>
<td>6.23</td>
<td>Telecommunications outlet/connectors</td>
<td>6-55</td>
</tr>
<tr>
<td>6.24</td>
<td>Examples of work area telecommunications outlet designs</td>
<td>6-56</td>
</tr>
<tr>
<td>6.25</td>
<td>Rack-mount ≈483 mm (19 in) modular patch panel</td>
<td>6-57</td>
</tr>
<tr>
<td>6.26</td>
<td>Modular patch panel with cable management bar installed in an ≈483 mm (19 in) equipment rack</td>
<td>6-59</td>
</tr>
<tr>
<td>6.27</td>
<td>66-style block, 89-style mounting brackets, and a distribution frame with installed 66-style blocks</td>
<td>6-61</td>
</tr>
<tr>
<td>6.28</td>
<td>110-style wiring blocks</td>
<td>6-63</td>
</tr>
<tr>
<td>6.29</td>
<td>BIX-style connecting blocks mounted in a distribution frame</td>
<td>6-66</td>
</tr>
<tr>
<td>6.30</td>
<td>25-pair BIX-style connecting strip</td>
<td>6-67</td>
</tr>
<tr>
<td>6.31</td>
<td>LSA-style connecting blocks</td>
<td>6-68</td>
</tr>
<tr>
<td>6.32</td>
<td>10-pair LSA-style connecting block</td>
<td>6-69</td>
</tr>
<tr>
<td>6.33</td>
<td>Hybrid equipment cord assembly or hybrid patch cord assembly</td>
<td>6-71</td>
</tr>
<tr>
<td>6.34</td>
<td>Example of MS2 and Type 710 IDC connector splicing contacts</td>
<td>6-73</td>
</tr>
<tr>
<td>6.35</td>
<td>Example of single-pair splice connectors and modules</td>
<td>6-74</td>
</tr>
<tr>
<td>6.36</td>
<td>Example of multipair splice connectors and modules</td>
<td>6-75</td>
</tr>
<tr>
<td>6.37</td>
<td>LC-style optical fiber adapters and connectors</td>
<td>6-80</td>
</tr>
<tr>
<td>6.38</td>
<td>SC-style optical fiber adapters and connectors</td>
<td>6-81</td>
</tr>
<tr>
<td>6.39</td>
<td>ST-style optical fiber connector</td>
<td>6-83</td>
</tr>
<tr>
<td>6.40</td>
<td>Array-style optical fiber connector and adapter (example of Type-A MPO configuration)</td>
<td>6-84</td>
</tr>
<tr>
<td>6.41</td>
<td>Array-style optical fiber connector and adapter (example of Type-B MPO configuration)</td>
<td>6-84</td>
</tr>
<tr>
<td>6.42</td>
<td>Fusion splicer</td>
<td>6-85</td>
</tr>
<tr>
<td>6.43</td>
<td>Mechanical splice open position</td>
<td>6-86</td>
</tr>
<tr>
<td>6.44</td>
<td>Optical fiber pigtail splicing</td>
<td>6-87</td>
</tr>
<tr>
<td>6.45</td>
<td>Cross-connection of optical fiber cabling segments (first- and second-level backbone)</td>
<td>6-90</td>
</tr>
<tr>
<td>6.46</td>
<td>Interconnection of equipment to backbone cabling</td>
<td>6-91</td>
</tr>
<tr>
<td>6.47</td>
<td>Hybrid optical fiber patch cord assembly</td>
<td>6-92</td>
</tr>
<tr>
<td>6.48</td>
<td>BNC-style connector</td>
<td>6-95</td>
</tr>
<tr>
<td>6.49</td>
<td>BNC-style connector components</td>
<td>6-96</td>
</tr>
<tr>
<td>6.50</td>
<td>BNC-style connector plug and jack</td>
<td>6-96</td>
</tr>
<tr>
<td>6.51</td>
<td>50-ohm and 75-ohm bayonet BNC-style connectors</td>
<td>6-97</td>
</tr>
</tbody>
</table>
Figure 6.52 One-piece crimp-style F-style connector 6-99
Figure 6.53 N-style coaxial connector 6-101
Figure 6.54 Standard wall-mount multimedia and modular furniture multimedia outlets featuring F-style coaxial connectors 6-103
Figure 6.55 BNC-style bracket mount and F-style ≈483 mm (19 in) rack-mount coaxial patch panels 6-105

Chapter 7: Firestop Systems
Figure 7.1 Standard time/temperature curves up to three hours 7-10
Figure 7.2 Elastomeric modules (within frames) 7-20
Figure 7.3 Mechanical firestop system 7-21
Figure 7.4 Example of fire-rated pathway device 7-22
Figure 7.5 Typical plastic pipe device 7-24
Figure 7.6 Typical cast-in-place firestop device 7-25
Figure 7.7 Examples of poke-thru 7-26
Figure 7.8 Continuous conduit penetration through concrete 7-32
Figure 7.9 Cable penetration in concrete wall or floor 7-33
Figure 7.10 PVC innerduct penetration in concrete wall 7-33
Figure 7.11 PVC innerduct penetration in concrete floor 7-34
Figure 7.12 Qualified cable tray seal system in concrete wall 7-35
Figure 7.13 Qualified steel pipe system in framed wall 7-36
Figure 7.14 Telecommunications cable seal system for framed wall 7-37
Figure 7.15 Non-metallic innerduct penetration of framed wall 7-38
Figure 7.16 Sleeve systems for retrofit over existing cables 7-39
Figure 7.17 Sleeve system with cable tray 7-40
Figure 7.18 Sleeve system with cable support 7-40
Figure 7.19 Expansion joint or slot in a floor 7-49
Figure 7.20 Expansion joint or slot in a wall 7-50
Figure 7.21 Perimeter gap 7-50
Figure 7.22 Seal system in a curtain wall 7-51
Figure 7.23 Typical label for all firestops 7-53
Figure 7.24 Concrete floor or wall 7-55
Figure 7.25 Typical framed wall penetration 7-56
Figure 7.26 Typical concrete wall penetration 7-57
Figure 7.27 Concrete wall or floor (metallic pipes) 7-58
Figure 7.28 Concrete wall or floor (no penetrating item) 7-59
Figure 7.29 Concrete wall or floor (electrical power, telecommunications, and building signaling cables) 7-60
Figure 7.30 Concrete floor (electrical power and telecommunications cables) 7-61
Figure 7.31 Framed wall (steel pipes or conduit) 7-62
Figure 7.32 Framed wall (cable) 7-63
Figure 7.33 Framed wall (steel or aluminum cable trays) ... 7-64
Figure 7.34 Concrete wall (cable) .. 7-65
Figure 7.35 Concrete floor or wall (bus duct) ... 7-66
Figure 7.36 Concrete floor or wall (steel pipe) ... 7-67
Figure 7.37 Framed wall (cables) .. 7-68
Figure 7.38 Framed wall (PVC pipe [closed or vented]). ... 7-69
Figure 7.39 Floor or wall (PVC, CPVC, or PB pipe [closed or vented] or RNC) 7-70
Figure 7.40 Wood joist floor (steel or copper pipe) .. 7-72
Figure 7.41 Concrete floor or wall (electrical power, building signaling, control, and telecommunications cables) ... 7-73
Figure 7.42 Concrete floor or wall (steel or aluminum cable tray) 7-74
Figure 7.43 Framed wall (steel or aluminum cable tray) ... 7-75
Figure 7.44 Floor or wall (steel or aluminum cable tray) .. 7-76
Figure 7.45 Floor or wall (pipes and cable tray) .. 7-77
Figure 7.46 Head of wall joint (framed wall or concrete, fluted deck) 7-78
Figure 7.47 Head of wall joint (concrete wall or concrete fluted deck) 7-79
Figure 7.48 Concrete floor or wall (telecommunications cable) 7-80
Figure 7.49 Framed wall (telecommunications cable) .. 7-81
Figure 7.50 Framed wall (telecommunications cable with sleeve) 7-82
Figure 7.51 Framed wall (telecommunications cable with firestop wrap strip) 7-83
Figure 7.52 Concrete floor or wall (telecommunications cable with sleeve) 7-84
Figure 7.53 Concrete floor or wall (telecommunications cable with firestop collar) .. 7-85
Figure 7.54 Framed wall stud cavity (electrical outlet box) 7-86
Figure 7.55 Concrete floor or wall (no penetrating item) .. 7-87
Figure 7.56 Concrete floor or wall (PVC innerduct or ENT with optical fiber cables and firestop wrap strip) .. 7-88
Figure 7.57 Concrete floor or wall (PVC innerduct or ENT with optical fiber cables and firestop sealant) ... 7-89
Figure 7.58 Framed wall (non-metallic conduit) .. 7-90
Figure 7.59 Framed wall (electrical power, building signaling, control, or telecommunications cable steel sleeve system) ... 7-91
Figure 7.60 Framed wall (electrical power, building signaling, control, or telecommunications cable split sleeve system) ... 7-93
Figure 7.61 Plenum-rated wrap system for combustible pipe 7-95
Figure 7.62 Intumescent blocks .. 7-96
Figure 7.63 Framed wall (electrical power, building signaling, control, or telecommunications cable steel sleeve system) ... 7-97
Figure 7.64 Concrete floor or wall (electrical power, building signaling, control, or telecommunications cable steel sleeve system) ... 7-98
Figure 7.65 Framed wall (power, building signaling, control, or telecommunications split cable pathway system) .. 7-99
Figure 7.66 Framed wall (power, building signaling, control, or telecommunications cable sleeve device system) .. 7-100
Figure 7.67 Concrete floor (power, building signaling, control, or telecommunications cable sleeve system) .. 7-101
Figure 7.68 Framed wall (telecommunications cable steel sleeve membrane penetration system) .. 7-102
Figure 7.69 Framed wall (telecommunications cable firestop grommet membrane penetration system) .. 7-103
Figure 7.70 Framed wall (telecommunications cable firestop grommet penetration system) .. 7-104
Figure 7.71 Typical perimeter fire barrier system exterior insulation glass panel curtain wall .. 7-105
Figure 7.72 Typical framed wall HVAC duct .. 7-106
Figure 7.73 Concrete floor (power, building signaling, control, or telecommunications cable pathway system) .. 7-107

Chapter 8: Bonding and Grounding (Earthing)
Figure 8.1 Typical supplementary bonding grid .. 8-11
Figure 8.2 Small systems .. 8-14
Figure 8.3 Recommended large system arrangement .. 8-16
Figure 8.4 Typical PBB .. 8-17
Figure 8.5 Typical SBB .. 8-18
Figure 8.6 Equipment rack bonding and grounding (earthing) .. 8-24
Figure 8.7 Zone of protection .. 8-27
Figure 8.8 Cone of protection .. 8-27
Figure 8.9 Extending zone of protection .. 8-28

Chapter 9: Power Distribution
Figure 9.1 Measuring amplitude .. 9-2
Figure 9.2 Measuring phase difference in a three-phase system .. 9-3
Figure 9.3 Delta configuration .. 9-4
Figure 9.4 Wye configuration .. 9-5
Figure 9.5 Center-tapped single-phase configuration .. 9-5
Figure 9.6 Typical electrical power system 1 .. 9-6
Figure 9.7 Typical electrical power system 2 .. 9-6
Figure 9.8 Calculation chart .. 9-7
Figure 9.9 Voltage and current in phase (resistive load) .. 9-9
Figure 9.10 Current lags voltage (inductive circuit) .. 9-9
Figure 9.11 Current leads voltage (capacitive load) .. 9-10
Figure 9.12 Panelboard connection to equipment .. 9-26
Figure 9.13 PDU connection to equipment .. 9-27
Figure 9.14 Sample Class 1 electrical system topology .. 9-32
Figure 9.15 Sample Class 2 electrical system topology .. 9-33
Figure 9.16 Sample Class 3 electrical system topology .. 9-34
Table of Contents

Figure 9.17 Sample Class 4 electrical system topology 9-35
Figure 9.18 UPS module with maintenance bypass 9-42
Figure 9.19 UPS system .. 9-43
Figure 9.20 Parallel redundant UPS system ... 9-44
Figure 9.21 Isolated redundant UPS system .. 9-45
Figure 9.22 Distributed redundant UPS system .. 9-46
Figure 9.23 Communications link UPS system .. 9-47
Figure 9.24 Series configured rotary UPS system 9-48
Figure 9.25 Elevation of modular UPS system ... 9-50
Figure 9.26 Typical dc power system .. 9-52
Figure 9.27 Identification by color, letter, or marking 9-78

Chapter 10: Telecommunications Administration
Figure 10.1 Telecommunications administration systems 10-1
Figure 10.2 Numbering TRs .. 10-13
Figure 10.3 Numbering cable trays ... 10-15
Figure 10.4 Patch panel labeling within a rack .. 10-18
Figure 10.5 Twisted-pair patch panel labeling with six-port groupings and near- and far-end panel and port identifiers .. 10-19
Figure 10.6 Pair patch panel labeling example where available label space is limited .. 10-19
Figure 10.7 Optical fiber patch panel labeling using sequential port numbering identifiers .. 10-20
Figure 10.8 Optical fiber patch panel labeling with subpanel cassette identifiers .. 10-20
Figure 10.9 Optical fiber patch panel labeling with HDA identifiers 10-21
Figure 10.10 Labeling example .. 10-27
Figure 10.11 Recordkeeping system example ... 10-35
Figure 10.12 Room grid coordinate example ... 10-39
Figure 10.13 Sample rack and cabinet non-grid identifiers 10-41

Chapter 11: Field Testing of Structured Cabling
Figure 11.1 Wire map testing ... 11-2
Figure 11.2 Pair electrical lengths .. 11-4
Figure 11.3 Propagation delay/delay skew ... 11-4
Figure 11.4 Return loss ... 11-5
Figure 11.5 NEXT .. 11-6
Figure 11.6 ACR-F .. 11-7
Figure 11.7 PSNEXT .. 11-7
Figure 11.8 Coaxial TDR test ... 11-10
Figure 11.9 Typical work area three-connector channel 11-11
Figure 11.10 Typical work area four-connector channel 11-11
Figure 11.11 Typical data center four-connector channel 11-12
Figure 11.12 Work area three-connector permanent link 11-12
Figure 11.13 Work area four-connector permanent link 11-13
Figure 11.14 Data center four-connector permanent link 11-14
Figure 11.15 MPTL ... 11-15
Figure 11.16 OTDR display ... 11-21

Chapter 12: Outside Plant
Figure 12.1 Underground pathway plan .. 12-2
Figure 12.2 Direct-buried pathway plan ... 12-4
Figure 12.3 Installing underground entrances 12-8
Figure 12.4 Examples of building attachment 12-11
Figure 12.5 Vertical conduit mast .. 12-12
Figure 12.6 Cable entrance sleeve through a wall 12-14
Figure 12.7 Typical joint trenching dimensions (section view through trench) . 12-29
Figure 12.8 Positioning conduit on poles ... 12-37
Figure 12.9 Typical cable MH .. 12-39
Figure 12.10 Basic MH configurations ... 12-40
Figure 12.11 MH Elements .. 12-41
Figure 12.12 Typical MH diagram ... 12-43
Figure 12.13 Typical MH on private property 12-44

Chapter 13: Audiovisual Systems
Figure 13.1 Measuring wavelength ... 13-2
Figure 13.2 Different amplitudes of equal frequency sine waves 13-3
Figure 13.3 Equal amplitudes of different frequency sine waves 13-3
Figure 13.4 Two waves offset by 180 degrees 13-4
Figure 13.5 Frequency ... 13-5
Figure 13.6 Complex waveform ... 13-6
Figure 13.7 Building complex waveforms .. 13-7
Figure 13.8 Electromagnetic spectrum ... 13-7
Figure 13.9 Sample rate the size of the signal frequency 13-12
Figure 13.10 Sample rate double the size of the signal frequency 13-13
Figure 13.11 Video signal building blocks .. 13-16
Figure 13.12 Video signal bandwidth .. 13-17
Figure 13.13 Analog video signals ... 13-20
Figure 13.14 RF signal ... 13-21
Figure 13.15 Examples of DVI connectors ... 13-22
Figure 13.16 Example of HDMI connector ... 13-23
Figure 13.17 Example of a DisplayPort connector 13-24
Figure 13.18 Optimum and acceptable viewing areas 13-32
Figure 13.19 Sightlines ... 13-33
Table of Contents

Figure 13.20 Flat floor—seats aligned..13-34
Figure 13.21 Tiered floor—seats staggered13-35
Figure 13.22 Chain of typical audio components13-43
Figure 13.23 Example of horn installation13-45
Figure 13.24 Potential versus needed acoustic gain measurements13-47
Figure 13.25 Loudspeaker dispersion polar plot13-49
Figure 13.26 Loudspeaker coverage formula13-50
Figure 13.27 Typical audioconferencing system13-55
Figure 13.28 Conference room microphone pickup pattern13-58
Figure 13.29 Two connected rooms and their acoustic echo cancellers13-61
Figure 13.30 Telephone hybrid ..13-63
Figure 13.31 Line echo canceller ..13-64
Figure 13.32 Loudspeaker coverage angle13-66
Figure 13.33 Microphone pickup and loudspeaker coverage patterns13-68
Figure 13.34 FOV ..13-73
Figure 13.35 Camera bright-to-dark ranges13-74
Figure 13.36 Videoconference light setup13-75
Figure 13.37 Hexagonal loudspeaker pattern13-85
Figure 13.38 Square loudspeaker pattern13-86
Figure 13.39 70 V loudspeaker line loss13-89
Figure 13.40 Distributed amplifier system13-91
Figure 13.41 Collaboration of component technology13-97
Figure 13.42 Home run network design ..13-103
Figure 13.43 Trunk and tap design ..13-104
Figure 13.44 Video over balanced twisted-pair cabling13-104
Figure 13.45 Video over optical fiber cabling13-105
Figure 13.46 Dividing the optical signal ..13-106
Figure 13.47 Signal tilt for ≈12.7 mm (0.50 in) hardline13-107

Chapter 14: Building Automation Systems

Figure 14.1 Building system changes ..14-3
Figure 14.2 Example of fire alarm, security, and access control interfaces with BAS14-6
Figure 14.3 HVAC system in a small commercial building14-9
Figure 14.4 Hierarchical configuration of processor and controller levels14-18
Figure 14.5 Cabling system elements and channel14-30
Figure 14.6 Single-point and chained branch devices14-31
Figure 14.7 Cabling system topologies for BAS14-37
Figure 14.8 Devices bridged at HC (FD) or HCP14-38
Figure 14.9 Devices chained at the HC (FD) or HCP14-39
Figure 14.10 BAS equipment cabling ...14-42
Chapter 15: Data Networks

Figure 15.1 Example of a LAN .. 15-2
Figure 15.2 Example of a WAN .. 15-3
Figure 15.3 OSI Reference Model 15-5
Figure 15.4 Message transfer described using the OSI Reference Model .. 15-7
Figure 15.5 Multiple routers in an internetwork .. 15-11
Figure 15.6 Integrated VoIP infrastructure .. 15-16
Figure 15.7 Types of network video communications .. 15-17
Figure 15.8 Functional (top-down) design .. 15-19
Figure 15.9 Physical (bottom-up) design .. 15-20
Figure 15.10 Class 1 telecommunications infrastructure .. 15-22
Figure 15.11 Class 2 telecommunications infrastructure .. 15-22
Figure 15.12 Class 3 telecommunications infrastructure .. 15-23
Figure 15.13 Class 4 telecommunications infrastructure .. 15-24
Figure 15.14 Server-to-switch connections .. 15-25
Figure 15.15 Redundant server-to-switch connections .. 15-26
Figure 15.16 Server-to-storage director connections .. 15-27
Figure 15.17 Redundant server-to-storage director connections .. 15-28
Figure 15.18 Example of Class 3 and Class 4 network and storage infrastructure .. 15-29
Figure 15.19 Centralized data center topology .. 15-30
Figure 15.20 End-of-row data center topology .. 15-31
Figure 15.21 Top-of-rack data center topology .. 15-32
Figure 15.22 Example of campus network .. 15-33
Figure 15.23 Links from customer site to SP .. 15-35
Figure 15.24 Example of a centralized WAN design .. 15-37
Figure 15.25 Example of a partial mesh WAN design .. 15-38
Figure 15.26 Partial mesh WAN after a link failure .. 15-39
Figure 15.27 Example of a full mesh WAN design .. 15-40

Chapter 16: Wireless Networks

Figure 16.1 Frequency, amplitude, and wavelength .. 16-6
Figure 16.2 Propagation velocity through free space .. 16-7
Figure 16.3 Fresnel zone .. 16-8
Figure 16.4 Ground and sky waves .. 16-11
Figure 16.5 Isotropic gain .. 16-12
Figure 16.6 Amplitude modulation .. 16-14
Table of Contents

Figure 16.7 Frequency modulation .. 16-15
Figure 16.8 Phase modulation ... 16-16
Figure 16.9 Pulse modulation techniques .. 16-17
Figure 16.10 Harmonic distortion .. 16-19
Figure 16.11 Power injector with tower-mounted preamplifier 16-35
Figure 16.12 Power injector for WLAN AP 16-36
Figure 16.13 Typical DAS environments ... 16-40
Figure 16.14 Omnidirectional antennas ... 16-42
Figure 16.15 Directional antennas .. 16-43
Figure 16.16 Radiating cable standoff mount 16-46
Figure 16.17 Headend and backend ... 16-50
Figure 16.18 Optical to RF coupling power relationship 16-52
Figure 16.19 ESS using a wireless distribution system 16-70
Figure 16.20 ESS using a cable distribution system 16-71
Figure 16.21 PTP bridging ... 16-74
Figure 16.22 Point-to-multipoint bridging .. 16-75
Figure 16.23 Repeating bridge ... 16-76

Chapter 17: Electronic Safety and Security

Figure 17.1 Elements of a security program 17-2
Figure 17.2 Threat, risk, and vulnerability assessments 17-3
Figure 17.3 Security quandary ... 17-4
Figure 17.4 MPTL with one CP ... 17-12
Figure 17.5 Electric strikes ... 17-15
Figure 17.6 Magnetic locks ... 17-17
Figure 17.7 Electric locksets ... 17-18
Figure 17.8 Electric latch and mechanical operation 17-19
Figure 17.9 Electrified exit hardware ... 17-20
Figure 17.10 Grid display layouts ... 17-25
Figure 17.11 Typical fire alarm pull station .. 17-34
Figure 17.12 Example of a Class N pathway 17-42
Figure 17.13 Redundant cables in Class N pathways 17-43
Figure 17.14 Additional pathway between Switch 1 and 2 17-44
Figure 17.15 Endpoint servicing more than one device 17-44
Figure 17.16 Enhanced annunciator panel .. 17-54
Chapter 18: Data Centers
Figure 18.1 Relationship of spaces in a data center .. 18-2
Figure 18.2 Hierarchical structure of a data center from CENELEC EN 50173-5 and ISO/IEC 11801-5 ... 18-14
Figure 18.3 Example of TIA-942-B data center topology 18-15
Figure 18.4 Cabling cross-sectional area comparison ... 18-16
Figure 18.5 Example of equipment cabling using overhead infrastructure 18-19
Figure 18.6 Example of overhead communications cabling with power and bonding conductors beneath raised access floor 18-21
Figure 18.7 Example of communications, power, and earth conductors installed in raised access floor ... 18-22
Figure 18.8 Layering ... 18-26

Chapter 19: Health Care
Figure 19.1 TDR ... 19-5
Figure 19.2 Redundancy option 1 ... 19-6
Figure 19.3 Redundancy option 2 ... 19-7
Figure 19.4 Redundancy option 3 ... 19-8
Figure 19.5 Redundancy option 4 ... 19-9
Figure 19.6 Typical nurse call staff emergency station 19-12
Figure 19.7 Typical nurse call bedside station .. 19-13
Figure 19.8 Typical nurse call code call station .. 19-14
Figure 19.9 Typical nurse call staff station .. 19-15
Figure 19.10 Nurse call system traditional one-line diagram 19-18
Figure 19.11 Typical physiological monitor remote wiring diagram 19-29
Figure 19.12 Typical RFID tag .. 19-31
Figure 19.13 Typical IPTS ... 19-36

Chapter 20: Residential Cabling
Figure 20.1 Residential cabling layout ... 20-4
Figure 20.2 Media room with one balanced twisted-pair and three coaxial cable runs to a telecommunications outlet 20-9
Figure 20.3 Example of a residential premises cabling system 20-10
Figure 20.4 Multi-dwelling unit cabling layout ... 20-12
Figure 20.5 Telecommunications backbone and distribution cabling layout for an apartment building with a central backbone 20-13
Figure 20.6 Telecommunications backbone and distribution cabling layout for an apartment building with multiple backbones 20-14
Figure 20.7 Example of conduit distribution for a seven-unit townhouse 20-15
Figure 20.8 Cabling distribution for a side-by-side duplex residence 20-16
Figure 20.9 Example of cable distribution for frame apartment projects 20-17
Figure 20.10 Example of an apartment complex with backbone cable 20-18
Figure 20.11 Telecommunications outlets/connector 20-23
Chapter 21: Project Administration and Execution
Figure 21.1 Simple OBS .. 21-17
Figure 21.2 PERT or network logic diagram using the precedence diagram method ... 21-21
Figure 21.3 Milestone chart .. 21-21
Figure 21.4 Gantt chart ... 21-22
Figure 21.5 Calendar of schedule .. 21-22
Figure 21.6 Example of budgeted cost of work schedules 21-25
Figure 21.7 Example of plotted BCWP, BCWS, and ACWP 21-25
Figure 21.8 Client/supplier model ... 21-27
Figure 21.9 United States National CAD Standard® layer name format 21-53

Chapter 22: Special Design Considerations
Figure 22.1 Industrial floor area described by MICE classification 1, 2, or 3 22-6

Appendix A: Codes, Standards, Regulations, and Organizations
Figure A.1 Conformité européenne mark A-85
Figure A.2 Emission limits at 10 m (≈33 ft) A-89
Figure A.3 IEC CISPR 22 conducted disturbance limits (main ports) A-89
Figure A.4 IEC CISPR 22 conducted disturbance limits (telecommunications ports) ... A-90
Figure A.5 RJ11C/RJ11W connector configuration A-97
Figure A.6 RJ15C connector configuration A-98
Figure A.7 RJ16X connector configuration A-99
Figure A.8 RJ17C connector configuration A-101
Figure A.9 RJ18C, RJ18W connector configuration A-102
Figure A.10 RJ31X connector configuration A-103
Figure A.11 RJ14C/RJ14W connector configuration A-104
Figure A.12 RJ14X connector configuration A-105
Figure A.13 RJ25C connector configuration A-106
Figure A.14 RJ61X connector configuration A-107
Figure A.15 RJ2DX connector configuration A-108
Figure A.16 RJ2EX connector configuration A-109
Figure A.17 RJ2FX connector configuration A-110
Figure A.18 RJ2GX connector configuration A-111
Figure A.19 RJ2HX connector configuration A-112
Figure A.20 RJ21X connector configuration A-113
Figure A.21 RJ2MB connector configuration A-114
Figure A.22 RJ71C connector configuration A-115
Figure A.23 RJ41S single-line data connection A-117
Figure A.24 RJ45S single-line data connection A-118
Figure A.25 RJ4MB single-line data connection A-119
Figure A.26 RJ41M single-line data connection A-121
Figure A.27 RJ45M single-line data connection A-123
Figure A.28 RJ26X single-line data connection A-124
Figure A.29 RJ27X single-line data connection A-125
Figure A.30 RJ48S connector configuration A-126
Figure A.31 RJ48T connector configuration A-127
Figure A.32 RJ48C connector configuration A-128
Figure A.33 RJ48M connector configuration A-129
Figure A.34 RJ48X connector configuration A-130
Figure A.35 RJ48H connector configuration A-131
Tables

Chapter 1: Principles of Transmission

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table 1.1</td>
<td>Conductor descriptions</td>
<td>1-3</td>
</tr>
<tr>
<td>Table 1.2</td>
<td>Solid conductor properties</td>
<td>1-4</td>
</tr>
<tr>
<td>Table 1.3</td>
<td>Electrical characteristics of common insulation types</td>
<td>1-7</td>
</tr>
<tr>
<td>Table 1.4</td>
<td>Explanations of insulation electrical characteristics</td>
<td>1-8</td>
</tr>
<tr>
<td>Table 1.5</td>
<td>Types of cable shields</td>
<td>1-15</td>
</tr>
<tr>
<td>Table 1.6</td>
<td>Common units of frequency measurement</td>
<td>1-18</td>
</tr>
<tr>
<td>Table 1.7</td>
<td>Spectrums of standard frequency bands</td>
<td>1-20</td>
</tr>
<tr>
<td>Table 1.8</td>
<td>Power ratios from 0 to 60 dB</td>
<td>1-21</td>
</tr>
<tr>
<td>Table 1.9</td>
<td>Transmission data rates</td>
<td>1-29</td>
</tr>
<tr>
<td>Table 1.10</td>
<td>Coding methods</td>
<td>1-35</td>
</tr>
<tr>
<td>Table 1.11</td>
<td>ADSL standards</td>
<td>1-43</td>
</tr>
<tr>
<td>Table 1.12</td>
<td>ADSL performance</td>
<td>1-44</td>
</tr>
<tr>
<td>Table 1.13</td>
<td>VDSL data rate and target range</td>
<td>1-44</td>
</tr>
<tr>
<td>Table 1.14</td>
<td>Propagation delay/delay skew</td>
<td>1-55</td>
</tr>
<tr>
<td>Table 1.15</td>
<td>Balanced twisted-pair cabling channel performance</td>
<td>1-64</td>
</tr>
<tr>
<td>Table 1.16</td>
<td>Applications supported using 100-ohm balanced twisted-pair cabling</td>
<td>1-65</td>
</tr>
<tr>
<td>Table 1.17</td>
<td>Transmission, speed, distance, and pair requirements</td>
<td>1-67</td>
</tr>
<tr>
<td>Table 1.18</td>
<td>IEEE 802.3 PoE classes</td>
<td>1-76</td>
</tr>
<tr>
<td>Table 1.19</td>
<td>Characteristics of typical LED sources</td>
<td>1-83</td>
</tr>
<tr>
<td>Table 1.20</td>
<td>Characteristics of typical short wavelength laser</td>
<td>1-84</td>
</tr>
<tr>
<td>Table 1.21</td>
<td>Characteristics of typical VCSELs</td>
<td>1-85</td>
</tr>
<tr>
<td>Table 1.22</td>
<td>Characteristics of typical LD sources</td>
<td>1-86</td>
</tr>
<tr>
<td>Table 1.23</td>
<td>Comparison of transmitters</td>
<td>1-87</td>
</tr>
<tr>
<td>Table 1.24</td>
<td>Optical fiber cable performance by type</td>
<td>1-90</td>
</tr>
<tr>
<td>Table 1.25</td>
<td>Summarized comparison of core sizes of multimode and singlemode optical fiber cable</td>
<td>1-98</td>
</tr>
<tr>
<td>Table 1.26</td>
<td>Typical characteristics of multimode optical fiber</td>
<td>1-99</td>
</tr>
<tr>
<td>Table 1.27</td>
<td>Characteristics of 50/125 μm multimode optical fiber</td>
<td>1-100</td>
</tr>
<tr>
<td>Table 1.28</td>
<td>Characteristics of 62.5/125 μm multimode optical fiber</td>
<td>1-101</td>
</tr>
<tr>
<td>Table 1.29</td>
<td>Typical characteristics of singlemode optical fiber</td>
<td>1-102</td>
</tr>
<tr>
<td>Table 1.30</td>
<td>Maximum cable attenuation coefficient</td>
<td>1-104</td>
</tr>
<tr>
<td>Table 1.31</td>
<td>Mismatch of core size and power loss</td>
<td>1-106</td>
</tr>
<tr>
<td>Table 1.32</td>
<td>Calculating optical fiber performance</td>
<td>1-108</td>
</tr>
<tr>
<td>Table 1.33</td>
<td>System gain, power penalties, and link loss budget calculations</td>
<td>1-111</td>
</tr>
<tr>
<td>Table</td>
<td>Description</td>
<td>Page</td>
</tr>
<tr>
<td>-------</td>
<td>---</td>
<td>------</td>
</tr>
<tr>
<td>1.35</td>
<td>Calculating losses</td>
<td>1-112</td>
</tr>
<tr>
<td>1.36</td>
<td>Splice loss values in decibels</td>
<td>1-113</td>
</tr>
<tr>
<td>1.37</td>
<td>Minimum system loss</td>
<td>1-114</td>
</tr>
<tr>
<td>1.38</td>
<td>Common SONET and SDH transmission rates</td>
<td>1-117</td>
</tr>
<tr>
<td>1.39</td>
<td>Levels of multiplexing and carrier transmission in North America</td>
<td>1-123</td>
</tr>
<tr>
<td>1.40</td>
<td>Levels of multiplexing and carrier transmission in Europe</td>
<td>1-125</td>
</tr>
</tbody>
</table>

Chapter 2: Electromagnetic Compatibility

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Factors that can affect EMI in telecommunications equipment</td>
<td>2-12</td>
</tr>
<tr>
<td>2.2</td>
<td>Factors that can affect EMI in sites</td>
<td>2-13</td>
</tr>
<tr>
<td>2.3</td>
<td>Four levels of immunity</td>
<td>2-19</td>
</tr>
<tr>
<td>2.4</td>
<td>ESD susceptibility ranges</td>
<td>2-20</td>
</tr>
<tr>
<td>2.5</td>
<td>Mutual capacitance ranges for telecommunications cables</td>
<td>2-21</td>
</tr>
<tr>
<td>2.6</td>
<td>Minimum separation distances from possible sources of EMI exceeding 5 kVA</td>
<td>2-38</td>
</tr>
<tr>
<td>2.7</td>
<td>Separation requirements between metallic cabling and specific EMI sources</td>
<td>2-38</td>
</tr>
</tbody>
</table>

Chapter 3: Telecommunications Spaces

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1</td>
<td>Size guidelines</td>
<td>3-11</td>
</tr>
<tr>
<td>3.2</td>
<td>Smaller buildings</td>
<td>3-11</td>
</tr>
<tr>
<td>3.3</td>
<td>Allocating termination space</td>
<td>3-12</td>
</tr>
<tr>
<td>3.4</td>
<td>Layout considerations</td>
<td>3-22</td>
</tr>
</tbody>
</table>

Chapter 4: Backbone Distribution Systems

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.1</td>
<td>Backbone distribution system components</td>
<td>4-1</td>
</tr>
<tr>
<td>4.2</td>
<td>EFM installed singlemode optical fiber</td>
<td>4-20</td>
</tr>
<tr>
<td>4.3</td>
<td>Common conduit sizes with vernacular</td>
<td>4-41</td>
</tr>
<tr>
<td>4.4</td>
<td>Summary of EFM physical layer signaling systems</td>
<td>4-54</td>
</tr>
</tbody>
</table>

Chapter 5: Horizontal Distribution Systems

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.1</td>
<td>Maximum allowable cable lengths with the use of multiuser telecommunications outlet assemblies</td>
<td>5-28</td>
</tr>
<tr>
<td>5.2</td>
<td>Comparison of CP locations</td>
<td>5-32</td>
</tr>
<tr>
<td>5.3</td>
<td>PoE and HDBaseT current specifications</td>
<td>5-37</td>
</tr>
<tr>
<td>5.4</td>
<td>Primary PON variations and their source standards</td>
<td>5-57</td>
</tr>
<tr>
<td>5.5</td>
<td>Maximum channel attenuation and supported distance for PON versions</td>
<td>5-60</td>
</tr>
<tr>
<td>5.6</td>
<td>EMT 40 percent conduit fill rate</td>
<td>5-74</td>
</tr>
<tr>
<td>5.7</td>
<td>Typical EMT conduit fill rate for varying cable diameters</td>
<td>5-75</td>
</tr>
<tr>
<td>5.8</td>
<td>Conduit fill with 1 bend</td>
<td>5-76</td>
</tr>
</tbody>
</table>
Table 5.9 Conduit fill with 2 bends ... 5-77
Table 5.10 Bend radii guidelines ... 5-80
Table 5.11 Adapting designs .. 5-81
Table 5.12 Typical space requirements for pull boxes having conduit enter at opposite ends of the box ... 5-83
Table 5.13 Slip sleeves and gutters ... 5-84
Table 5.14 Coverings .. 5-90
Table 5.15 Load capacity ... 5-90
Table 5.16 Guidelines for recommending ceiling panels 5-94
Table 5.17 Common types of cable trays 5-105
Table 5.18 Common cable tray dimensions 5-107
Table 5.19 ADA height requirements 5-120

Chapter 6: ICT Cables and Connecting Hardware

Table 6.1 Comparison of the terms class and category within ISO/IEC and TIA standards .. 6-3
Table 6.2 Balanced twisted-pair cabling channel performance 6-4
Table 6.3 Balanced twisted-pair cable designations 6-4
Table 6.4 Balanced cable designs ... 6-5
Table 6.5 Optical fiber cable transmission performance parameters 6-15
Table 6.6 Typical distances supported by optical fiber cabling 6-18
Table 6.7 Examples of regional fire safety standards 6-27
Table 6.8 Communications cable types 6-28
Table 6.9 Optical fiber cable types .. 6-29
Table 6.10 Interclass relativity of NEC and IEC fire safety specifications 6-31
Table 6.11 Comparison between NEC CM ratings and CSA FT requirements .. 6-32
Table 6.12 Connecting hardware transmission performance categories for 110-style connector-based connecting hardware 6-35
Table 6.13 Connecting hardware transmission performance categories 6-38
Table 6.14 Connecting hardware transmission performance categories for BIX-style connectors ... 6-40
Table 6.15 Connecting hardware transmission performance categories for LSA-style connector-based connecting hardware 6-43
Table 6.16 Modular plug transmission performance categories 6-47
Table 6.17 Modular jack transmission performance categories 6-50
Table 6.18 50-position miniature ribbon connector transmission performance categories .. 6-53
Table 6.19 Optical fiber link transmission performance calculations worksheet 6-78
Table 6.20 Splice insertion loss guidelines and objectives 6-86
Chapter 7: Firestop Systems
Table 7.1 Barrier standards ... 7-6
Table 7.2 European test standards 7-12
Table 7.3 Rating classifications, standards, and definitions 7-13
Table 7.4 Limiting temperature for each test standard 7-16
Table 7.5 Pipes, conduits, sleeve systems, innerducts, cable trays, and cable penetration firestop methods (in ceilings) 7-44
Table 7.6 Electrical apparatus, boxes, and access panels firestop methods (in ceilings) .. 7-45
Table 7.7 Pipes, conduits, sleeve systems, innerducts, cable trays, and cable penetration firestop methods (in floors/ceilings) 7-45
Table 7.8 Underfloor pipe, conduit, sleeve system, and innerduct firestop methods (in floors) .. 7-46
Table 7.9 Pipe sizes and fire ratings 7-71
Table 7.10 Sizes of pipe chokes, wrap strip layers, and fire ratings 7-91
Table 7.11 United States firestop standards 7-109
Table 7.12 Canadian firestop standards 7-111
Table 7.13 International firestop standards 7-112

Chapter 8: Bonding and Grounding (Earthing)
Table 8.1 Telecommunications bonding component terms cross-reference 8-2
Table 8.2 Basic guide to calculating bonding conductor resistance values 8-21

Chapter 9: Power Distribution
Table 9.1 Electrical formulas ... 9-14
Table 9.2 Circular mils of standard AWG conductors 9-16
Table 9.3 Voltage and current fluctuations 9-18
Table 9.4 K-rating based on load makeup 9-22
Table 9.5 Calculating maximum input current 9-58
Table 9.6 Calculating voltage ... 9-60
Table 9.7 Major alarms (dc) ... 9-72
Table 9.8 Minor alarms (dc) ... 9-73
Table 9.9 Major alarms (UPS) ... 9-73
Table 9.10 Color code for conductors in the United States 9-77
Table 9.11 Color code for conductors in the United Kingdom and Ireland 9-79

Chapter 10: Telecommunications Administration
Table 10.1 Required identifiers by class 10-6
Table 10.2 Minimum and optional administration system elements 10-8
Table 10.3 Color codes .. 10-22
Table 10.4 Identifying pathways .. 10-32
Table 10.5 Required records by class 10-37
Chapter 11: Field Testing of Structured Cabling
Table 11.1 Determining worst-case attenuation coefficient. 11-23

Chapter 12: Outside Plant
Table 12.1 Service diversity ... 12-17
Table 12.2 Terminating space ... 12-20
Table 12.3 Vertical/horizontal separations .. 12-28
Table 12.4 Metallic conduit types and sizes used in telecommunications 12-33
Table 12.5 Direct-bury PVC conduit types and sizes used in telecommunications ... 12-34
Table 12.6 Non-metallic conduit types and sizes used in telecommunications ... 12-35

Chapter 13: Audiovisual Systems
Table 13.1 Color temperature ranges .. 13-9
Table 13.2 Typical audio signal units of measurement 13-11
Table 13.3 Common bit resolutions .. 13-14
Table 13.4 Supported video formats ... 13-24
Table 13.5 SDTV versus HDTV ... 13-26
Table 13.6 Front and rear projection advantages and disadvantages 13-41
Table 13.7 Area covered by horns ... 13-87
Table 13.8 AI speech intelligibility ... 13-95
Table 13.9 Example of loss values per \(\approx 30.5 \text{ m (100 ft)}\) of the coaxial cable for the lowest and highest channels in a 60-channel system 13-107

Chapter 14: Building Automation Systems
Table 14.1 Typical work and BAS coverage area sizes 14-33

Chapter 16: Wireless Networks
Table 16.1 Balanced twisted-pair cabling channel performance 16-21
Table 16.2 Transceiver types and application 16-28

Chapter 18: Data Centers
Table 18.1 Comparison of the standards .. 18-10

Chapter 20: Residential Cabling
Table 20.1 Recognized tenant area residential cabling by grade 20-3
Table 20.2 Guidance in planning the wall space allocated for DD and associated equipment ... 20-7
Table 20.3 Telecommunications outlets/connectors for residences 20-9
Table 20.4 Minimum space for a multi-dwelling unit CTR 20-11

Chapter 21: Project Administration and Execution
Table 21.1 MasterFormat® 2018 numbering 21-44
Chapter 22: Special Design Considerations

Table 22.1 List of applicable IEC test procedures .. 22-8
Table 22.2 IP codes ... 22-10
Table 22.3 Enclosure ratings and IP codes ... 22-11
Table 22.4 Comparison of specific applications of enclosures for indoor non-hazardous locations .. 22-12

Appendix A: Codes, Standards, Regulations, and Organizations

Table A.1 Schematic of the relationships between standards A-25
Table A.2 Key elements of the legal and regulatory framework of telecommunications sectors in select countries A-32
Table A.3 Schematic of the relationships between CENELEC standards A-34
Table A.4 Sections of the *Canadian Electrical Code (CEC)* A-46
Table A.5 Federal Communications Commission (FCC) documents A-58
Table A.6 *National Electrical Safety Code® (NESC®)* parts, sections, and rules applicable to telecommunications distribution requirements A-60
Table A.7 *National Electrical Code® (NEC®)* articles and sections that impact telecommunications installation A-66
Table A.8 Federal Communications Commission (FCC) regulations A-79
Table A.9 Class A radiation limits ... A-87
Table A.10 Class B radiation limits ... A-87
Table A.11 EN 61000-6-1 and EN 61000-6-2 generic standards A-91
Table A.12 RJ11C/RJ11W connector configuration A-96
Table A.13 RJ15C connector configuration ... A-98
Table A.14 RJ16X connector configuration ... A-99
Table A.15 RJ17C connector configuration ... A-100
Table A.16 RJ18C, RJ18W connector configuration A-102
Table A.17 RJ31X connector configuration ... A-103
Table A.18 RJ14C/RJ14W connector configuration A-104
Table A.19 RJ14X connector configuration ... A-105
Table A.20 RJ25C connector configuration ... A-106
Table A.21 RJ61X connector configuration ... A-107
Table A.22 RJ2DX connector configuration ... A-108
Table A.23 RJ2EX connector configuration ... A-109
Table A.24 RJ2FX connector configuration ... A-110
Table A.25 RJ2GX connector configuration ... A-111
Table A.26 RJ2HX connector configuration ... A-112
Table A.27 RJ21X connector configuration ... A-113
Table A.28 RJ2MB connector configuration .. A-114
Table A.29 RJ71C connector configuration ... A-115
Table A.30 RJ41S single-line data connection A-116
Table of Contents

Table A.31 RJ45S single-line data connection A-118
Table A.32 RJ4MB single-line data connection A-119
Table A.33 RJ41M single-line data connection A-120
Table A.34 RJ45M single-line data connection A-122
Table A.35 RJ26X single-line data connection A-124
Table A.36 RJ27X single-line data connection A-125
Table A.37 RJ48S connector configuration A-126
Table A.38 RJ48T connector configuration A-127
Table A.39 RJ48C connector configuration A-128
Table A.40 RJ48M connector configuration A-129
Table A.41 RJ48X connector configuration A-130
Table A.42 RJ48H connector configuration A-131
Table A.43 Intermixable services at network-provided standard connectors A-132
Table A.44 Facility interface code translator A-135

Examples

Chapter 1: Principles of Transmission
Example 1.1 Optical fiber performance calculations example 1-109

Chapter 14: Building Automation Systems
Example 14.1 SoW checklist .. 14-26

Chapter 21: Project Administration and Execution
Example 21.1 WBS ... 21-19
Example 21.2 WBS in a text outline format 21-20