Power over Ethernet (PoE) Watts in your Network?

Jake Edler
Director of Marketing Communications
Omnitron Systems Technology, Inc.
Power over Ethernet (PoE)
Watts in your Network?

Agenda
Introduction
PoE Definitions and Standards
PoE Extension Technologies
Case Studies
Q and A
About Omnitron Systems

Corporate Profile

• Design and Manufacture PoE, fiber optic, and Ethernet network connectivity products since 1992

• Corporate headquarters and manufacturing facilities are based in Irvine, California

Markets Served:

- Enterprise
- Telecom
- Government
- Security
- Industrial
- Data Center
Power over Ethernet (PoE)
Watts in your Network?

PoE Definitions and Standards
What is PoE?

Power over Ethernet (PoE) is a standard based technology for the safe delivery of data and power to remote devices over copper cabling.

- Uses standard Ethernet UTP cables
 - Ex. Cat 5e or Cat 6 cable
- Power and data co-exist on same copper conductors
PoE Terminology

- **Endspan PSE** – located at the end of a link segment

![PoE Terminology Diagram](image-url)
PoE Terminology

- **Midspan PSE** – located in the middle of a link segment
IEEE PoE Standards

IEEE 802.3af PoE
• Ratified in 2003
• Allows up to 15.4W per connection
 – 12.95W assured to be available at the PD at 100m

IEEE 802.3at PoE+
• Ratified in 2009
• Allows up to 30.0W per connection
 – 25.5W assured to be available at the PD at 100m

IEEE 802.3bt – 60W – 100W High-Power PoE
• Ratified in 2018
• Allows up to 100W per connection
 – 71W assured to be available at the PD at 100m
<table>
<thead>
<tr>
<th>Spec / Name</th>
<th>Ratified</th>
<th>Pairs needed</th>
<th>PoE Type</th>
<th>PoE Class</th>
<th>Power at PSE</th>
<th>Power at PD</th>
<th>Cable Type</th>
<th>Data Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>802.3af PoE</td>
<td>2003</td>
<td>2 Pairs (10M/100M)</td>
<td>Type 1</td>
<td>Class 1</td>
<td>4W</td>
<td>3.8W</td>
<td>Cat 3, 5, 6, 7</td>
<td>10M 100M Gigabit</td>
</tr>
<tr>
<td>(15 W)</td>
<td></td>
<td></td>
<td></td>
<td>Class 2</td>
<td>7W</td>
<td>6.5W</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Class 3</td>
<td>15.4W</td>
<td>13W</td>
<td></td>
<td></td>
</tr>
<tr>
<td>802.3at PoE+</td>
<td>2009</td>
<td>4 Pairs (Gigabit)</td>
<td>Type 2</td>
<td>Class 4</td>
<td>30W</td>
<td>25.5W</td>
<td>Cat 5, 5e, 6, 7</td>
<td>10M 100M Gigabit</td>
</tr>
<tr>
<td>(30W)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>802.3bt 4 Pair PoE</td>
<td>2018</td>
<td>4 Pairs</td>
<td>Type 3</td>
<td>Class 5</td>
<td>45W</td>
<td>40W</td>
<td>Cat 5e, 6, 7</td>
<td>10M 100M Gigabit</td>
</tr>
<tr>
<td>(60/100W)</td>
<td></td>
<td></td>
<td></td>
<td>Class 6</td>
<td>60W</td>
<td>51W</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Type 4</td>
<td>Class 7</td>
<td>75W</td>
<td>62W</td>
<td>Cat 5e, 6, 7</td>
<td>2.5G 5G 10G</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Class 8</td>
<td>90W</td>
<td>71.3W</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
PoE Standards Reference Chart

<table>
<thead>
<tr>
<th>Type</th>
<th>Standard</th>
<th>Watts</th>
<th>PoE Powered Devices</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type 4</td>
<td>802.3bt</td>
<td>60-100W</td>
<td>Digital Signage, Small Cell, Smart LED Lighting</td>
</tr>
<tr>
<td>Type 3</td>
<td>802.3bt</td>
<td>45-60W</td>
<td>PTZ Camera, WiFi 6 Access Point, POS Terminal</td>
</tr>
<tr>
<td>Type 2</td>
<td>802.3at</td>
<td>15-30W</td>
<td>IP Camera, WiFi 4 or 5 Access Point, Video Phone</td>
</tr>
<tr>
<td>Type 1</td>
<td>802.3af</td>
<td>0-15W</td>
<td>IP Camera, Fire Alarm, Access Control</td>
</tr>
</tbody>
</table>
IEEE Standards – Compatibility

- **Future-Proof networks** – all IEEE PoE Standards are backward-compatible to support the lower wattage requirements 😊

<table>
<thead>
<tr>
<th></th>
<th>IEEE Standard PoE Standard</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>802.3af 15W</td>
</tr>
<tr>
<td>15W</td>
<td>X</td>
</tr>
<tr>
<td>30W</td>
<td>X</td>
</tr>
<tr>
<td>60W</td>
<td></td>
</tr>
<tr>
<td>100W</td>
<td></td>
</tr>
</tbody>
</table>
How Does PoE Work?

• PSE asks connected device if it needs PoE power, and how much?
• If it’s a PD, it will let the PSE know how much power it requires
• Power is then supplied by the PSE to the PD
• If it’s not a PD, the PSE will NOT send power (equipment is safe)
 – But WILL still pass data
Ethernet Data Can Only Travel 100 Meters over Copper

- Data deteriorates after 100m (might be undetectable by receiver)

- Use Fiber to Extend Data beyond 100M
 - PoE Media Converters & Switches
- Use Copper to Extend Data and Power beyond 100M
 - PoE Extenders
Power over Ethernet (PoE) Watts in your Network?

PoE Extension Technologies
PoE Extension

PoE Extension Technologies
- Ethernet (VDSL) Extenders
- PoE Copper Extenders
- PoE Fiber Media Converters
- PoE Fiber Switches

Comparison and Contrast
- Distance
- PoE PSE Power Provided
- Bandwidth
- Availability of Local Power
- Features
- Cable Media
- Price
PoE VDSL Extenders (Very High Speed Digital Subscriber Line)

- Two port or multi-port devices
- Requires external AC or DC power
- Up to 30W PoE+ over short distances

Strengths
- Plug and Play
- Up to 2400 meters over RJ11 Copper

Weaknesses
- PoE power only at short distances
- Limited bandwidth at long distance
- Proprietary, unique to manufacturer
How do VDSL Extenders Work?

- Where twisted pair or Coax is available, and installing fiber is cost prohibitive.
- Head end device is powered, and requires a power injecting device.
- Line power is proprietary over extended cable distance.
VDSL Extenders

<table>
<thead>
<tr>
<th>Criterion</th>
<th>PoE Ethernet Extenders</th>
</tr>
</thead>
<tbody>
<tr>
<td>Distance</td>
<td>Up to 2400 meters over Coax</td>
</tr>
<tr>
<td>PoE PSE Power</td>
<td>Up to 30W PoE+ over short distances</td>
</tr>
<tr>
<td>Local Power</td>
<td>• AC or DC power required for VDSL Extenders</td>
</tr>
<tr>
<td></td>
<td>• May require additional power injectors</td>
</tr>
<tr>
<td>Number of PDs</td>
<td>1 or 2</td>
</tr>
<tr>
<td>Bandwidth</td>
<td>• 100Mbs over short distances (200 to 300 meters)</td>
</tr>
<tr>
<td></td>
<td>• 1 to 4Mbps over longer distances (1000 to 2400 meters)</td>
</tr>
<tr>
<td>Features</td>
<td>• Typically unmanaged, plug-and-play devices</td>
</tr>
<tr>
<td></td>
<td>• Auto-negotiation of duplex modes and data rates</td>
</tr>
</tbody>
</table>
PoE Copper Extenders

• Two port or multi-port devices
• Functions as both Powered Device (PD) and Power Sourcing Equipment (PSE)
• Requires no external AC power

Strengths
- Plug-and-play
- Full Gigabit data rate to end device
- Powers PoE, PoE+, and HPoE devices

Weaknesses
- Extender required every 100m
- Head end must provide power
How do Copper Extenders work?

- PoE Extender Receives Power through PD Port
- PoE Extender Provides Power through PSE Port
Voltage Boosting Technology

- Installing PoE Copper extenders with Voltage Boosting Technology guarantees voltage requirement to the PDs.

PoE Extenders without Voltage Boosting Technology

- PD Detects Low Voltage
- 56V 50V 48V 44V 42V 38V
- 100 Meters

PoE Extenders with Voltage Boosting Technology

- PD Detects Normal Voltage
- 56V 50V 56V 50V 56V 50V
- 100 Meters
PoE Copper Extender Distances

- Up to 700m to 802.3af PD, up to 800m to non-PoE (AC/DC powered) device

Power and distance dependent on:

- Power provided by PSE (Power Budget)
- Power consumed by PoE Extenders and PD(s)
- Type of Cabling
PoE Extender with Drop Locations

- Additional ports enable PD drop locations along daisy chain
 - Power consumption reduces overall distance
 - Provides network design flexibility
PoE Copper Extenders

<table>
<thead>
<tr>
<th>Criterion</th>
<th>PoE Copper Extenders</th>
</tr>
</thead>
<tbody>
<tr>
<td>Distance</td>
<td>Up to 700 meters in daisy chain (Extender provides power)</td>
</tr>
<tr>
<td>PoE PSE Power</td>
<td>~55W @ 200 Meters, ~25W @ 500 Meters, ~7W @ 700 Meters</td>
</tr>
<tr>
<td>Local Power</td>
<td>No AC or DC power required for PoE Copper Extenders</td>
</tr>
<tr>
<td>Number of PDs</td>
<td>Up to 4 (deployed with drop locations)</td>
</tr>
<tr>
<td>Bandwidth</td>
<td>Gigabit data rate at all distances</td>
</tr>
<tr>
<td>Features</td>
<td>• Voltage Boosting Technology</td>
</tr>
<tr>
<td></td>
<td>• Typically unmanaged, plug-and-play devices</td>
</tr>
<tr>
<td></td>
<td>• Auto-negotiation of duplex modes and data rates</td>
</tr>
</tbody>
</table>
PoE Media Converters

- Extend distances to PoE devices with fiber
- PoE Media Converter is powered by AC or DC power
- Multiple Fiber and RJ-45 PoE port configurations

Strengths

- Plug and Play, or Configurable features:
- Remote PoE Reset
- Enables distances up to 140 Km (87 miles)

Weaknesses

- Requires local AC/DC Powering
- Requires fiber
How PoE Media Converters Work

- Use switch fiber ports at the Head End
- Or copper switch with media converters
- Install PoE Media Converter near AC or DC power
- Install PDs on Poles, Ceilings, Enclosures etc.
 - 100m Copper max. from the media converter
PoE Media Converters

<table>
<thead>
<tr>
<th>Criterion</th>
<th>PoE Media Converters</th>
</tr>
</thead>
<tbody>
<tr>
<td>Distance</td>
<td>Up to 140 Km (87 miles). Can be daisy chained for additional links</td>
</tr>
<tr>
<td>PoE PSE Power</td>
<td>PoE, PoE+, HPoE and 4 Pair PoE (802.3bt)</td>
</tr>
<tr>
<td>Local Power</td>
<td>• AC or DC power required for PoE Media Converter</td>
</tr>
<tr>
<td>Bandwidth</td>
<td>Up to 10 Gigabit data rate at all distances</td>
</tr>
<tr>
<td>Features</td>
<td>• Managed or unmanaged</td>
</tr>
<tr>
<td></td>
<td>• One or Two Fiber Ports</td>
</tr>
<tr>
<td></td>
<td>• DIP-Switch configuration of PoE reset, restore modes,</td>
</tr>
<tr>
<td></td>
<td>• Auto-negotiation of duplex modes and data rates</td>
</tr>
</tbody>
</table>
PoE Fiber Switches

- Compact PoE Fiber Switches extend distances to MULTIPLE PoE devices
- Requires AC or DC power
- Enables distances up to 140 Km (87 miles)

Strengths

Remote PoE Reset, Dual Device Mode, VLANs, Heartbeat, QoS, MRP and RSTP, Link Aggregation
Powers PoE, PoE+, and 60W / 100W BT PDs from same PoE Fiber Switch
Managed or Unmanaged devices

Weaknesses

Requires local AC/DC Power
Requires fiber
How PoE Fiber Switches Work

• Run fiber from head end (fiber switch or copper switch and media converters)
• Install **PoE Fiber Switch** near AC or DC power
• Install PDs
 – 100m Copper max. from the PoE Fiber Switch
PoE Fiber Switch Application – Topologies

Point-to-Point

Daisy Chain

Redundant (LAG)

Ring (STP / MRP)
Industrial PoE Fiber Switches

- Also available as ruggedized industrial products
- Similar features as commercial products
- Temperature hardened: -40 to 75 deg C
- Industrial hardened enclosure
- DIN-Rail mount included standard
- Managed or Unmanaged devices
Industrial PoE Fiber Switch Application

- **Point to Point**
- **Daisy Chain**
- **Redundant (LAG)**
- **Ring (STP / MRP)**
Other Industrial PoE Fiber Switch Applications

- Critical Infrastructure
- Perimeter Security
- Historic Sites
- Sports Arenas
- Transportation
- Cell Towers
PoE Fiber Switches

<table>
<thead>
<tr>
<th>Criterion</th>
<th>PoE Fiber Switches</th>
</tr>
</thead>
<tbody>
<tr>
<td>Distance</td>
<td>Up to 140 Km (87 miles). Can be daisy chained for additional links</td>
</tr>
<tr>
<td>PoE PSE Power</td>
<td>PoE, PoE+, HPoE, and 4 Pair PoE (802.3bt) for multiple devices</td>
</tr>
<tr>
<td>Local Power</td>
<td>AC or DC power required for PoE Fiber Switch</td>
</tr>
<tr>
<td>Number of PDs</td>
<td>Typically up to 48 PDs (mixed power levels)</td>
</tr>
<tr>
<td>Bandwidth</td>
<td>Up to 10 Gigabit at all distances</td>
</tr>
<tr>
<td>Features</td>
<td>• Managed or unmanaged</td>
</tr>
<tr>
<td></td>
<td>• One or Two Fiber Ports, and up to 48 RJ-45 PSE ports</td>
</tr>
<tr>
<td></td>
<td>• Remote PoE reset, PoE heartbeat, Dual Device Mode, VLAN, QoS, MRP and spanning tree</td>
</tr>
</tbody>
</table>
PoE Extension Technology Comparison

<table>
<thead>
<tr>
<th>Criterion</th>
<th>VDSL Extenders</th>
<th>PoE Copper Extenders</th>
<th>PoE Media Converters</th>
<th>PoE Fiber Switches</th>
</tr>
</thead>
<tbody>
<tr>
<td>PoE Power</td>
<td>PoE, PoE+</td>
<td>PoE, PoE+, BT</td>
<td>PoE, PoE+, BT</td>
<td>PoE, PoE+, BT</td>
</tr>
<tr>
<td>Distance</td>
<td>2400 M</td>
<td>700 M</td>
<td>140 Km</td>
<td>140 Km</td>
</tr>
<tr>
<td>Bandwidth</td>
<td>1- 100Mbps</td>
<td>1 Gigabit</td>
<td>1 Gigabit/10G</td>
<td>1 Gigabit/10G</td>
</tr>
<tr>
<td># of PDs</td>
<td>1 or 2</td>
<td>Up to 4</td>
<td>1 or 2</td>
<td>Up to 48</td>
</tr>
<tr>
<td>Local Power</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Cable</td>
<td>Phone, Coax</td>
<td>UTP</td>
<td>Fiber, UTP</td>
<td>Fiber, UTP</td>
</tr>
<tr>
<td>Price</td>
<td>$</td>
<td>$</td>
<td>$$</td>
<td>$$$</td>
</tr>
</tbody>
</table>
Power over Ethernet (PoE) Watts in your Network?

Case Studies
Case Study – Smart Building

• Integrates all of a facility's systems into a centrally controlled Ethernet network with IP-based structured cabling

• Benefits include:
 • Energy efficiency
 • Improved safety
 • Reduced labor costs
 • Reduced operating costs
 • Simplified asset Mgt.

• PoE enables PDs at any location, regardless if a site has electrical outlets
Case Study – Smart Building

PoE Powered Devices
- IP Phones
- LED Lighting
- Sensors
- Access Control
- Wi-Fi APs
- Wi-Fi APs
- IP Cameras
- IP Cameras
- Displays
- Displays
- Data Closet

100 Meter Distance Limitation
Case Study – Smart Building

PoE Powered Devices
- IP Phones
- LED Lighting
- Sensors
- Access Control
- Wi-Fi APs
- IP Cameras
- Displays
- Data Closet

PoE Extender
PoE PSE Switch
PoE Fiber Switch
PoE Powered Media Converter
Case Study – International Airport

• Due to customer demand, a new Wi-Fi network was installed throughout the airport terminals and concourses

• Required over 300 Wi-Fi access points throughout the 6.8 million square foot terminal complex

• The new Wi-Fi network was installed in less than 30 days

• The network provides access to 15,000 simultaneous users
Case Study – International Airport

- Each concourse has multiple Intermediate Data Frames (IDF)
- Each IDF provides connectivity to Wi-Fi Access Points
- Fiber is used to extend distances to PDs outside the reach of copper
- PoE Power Reset feature saved time and technician costs
Case Study – International Airport

Managed Gigabit Media Converters installed in a high-density Chassis

PoE Switch

To Network Core

PoE+ Wi-Fi Access Points

PoE Media Converters

Up To 18 Gigabit Fiber Runs

Fiber
UTP with PoE
UTP
Case Study – Casino Floor

PoE Powered Devices
- Wi-Fi APs
- IP Cameras
- Displays
- Data Closet

100 Meter Distance Limitation

UTP with PoE & Data
- Fiber with Data
Case Study – Hospitals
Case Study – Shopping Mall – Security and WiFi Installation

PoE Powered Devices
- Wi-Fi APs
- IP Cameras
- Data Closet

PoE Fiber Switch
PoE Extender

100 Meter Distance Limitation

UTP with PoE & Data
Fiber with Data
Case Study – Smart City
Choosing the Right Type of PoE PSE

- PoE/PoE+/60W or 100W PoE power sourcing
- Commercial Temperature or Wide / Industrial Temp
- Number of Fiber and Copper Ports needed
- Connector Type - SFP, ST, SC, LC
- Ethernet Data Rate (speed) - 10/100, 10/100/1000, 10G
- Fiber Type - Multimode, Single-Mode, Dual or Single
- Fiber Distance - up to 140km
- Managed or Unmanaged
- Powering option - AC, DC, PoE (extenders only)
- Mounting – Tabletop, Wall or Rack Mount Shelf, DIN-Rail
Power over Ethernet (PoE)
Watts in your Network?

Thank You!
Power over Ethernet (PoE)
Watts in your Network?

Jake Edler
Omnitron Systems
info@omnitron-systems.com
+1-949-250-6510