REALITIES OF 802.11ac SPEEDS IN THE ENTERPRISE

RICHARD (RICK) T. STEINER
RCDD, NTS, CWNE(#234), CCNA, CCNA-WIRELESS, ACMP, ACDX (#128)
AIROPATH, INC. – SEATTLE, WA
IT'S WIRELESS. HOW HARD COULD IT BE TO NOT INSTALL WIRES?
THE CLAIMS

• Deliver increased scale and coverage
• Offers a significant boost in performance
• Offers up to 7Gbps of throughput
• Can handle up to XXXX users per radio
• MU-MIMO can talk to multiple clients simultaneously
• To deploy you need multigigabit links to the Access Points
WHAT WE ARE COVERING

• Definitions and Inner Workings

• Key Factors that affect performance

• The Real Deal

• Refuting or Validation of the Claims
WIRELESS BASICS

• Half Duplex
 • Only one device can speak
 • Cannot TX and RX at the same time
 • Time slicing
 • CSMA/CA

• Environment is key
 • Attenuation
 • Interference
 • Other factors
Channels defined for 5 GHz bands (U.S. regulations), showing 20, 40, 80 and 160 MHz channels
(channel 1 is now allowed in the U.S. for one additional 20 MHz, one 40 MHz and one 80 MHz channel)

US U-NII 1 and U-NII 2 bands
- U-NII 1: 5150-5250 MHz (indoors only)
- U-NII 2: 5250-5350 MHz
- 8x 20 MHz channels
- 4x 40 MHz channels
- 2x 80 MHz channels
- 1x 160 MHz channel
- U-NII II requires DFS (& TPC if over 500 mW/27 dBm EIRP)

US intermediate band (U-NII 2 extended)
- 5450-5725 MHz
- 12x 20 MHz channels
- 6x 40 MHz channels
- 3x 80 MHz channels
- 1x 160 MHz channel
- Requires DFS (& TPC if over 500 mW/27 dBm EIRP)
- 5500-5650 MHz is used by weather radars and is temporarily not available in the U.S.

US U-NII 3/ISM band
- 5725-5825 MHz
- 5x 20 MHz channels
- 2x 40 MHz channels
- 1x 80 MHz channel
- Slightly different rules apply for channel 165 in ISM spectrum
Modulation

- Method of modify the carrier signal to represent 1’s and 0’s - Symbols
- Amplitude, Phase, and Frequency or a combination (Ex. QAM)
Modulation Continued

Voltagex

Time

1 0 1 0

Input Modulating Digital Signal

Carrier Frequency

PSK Signal

BPSK
MODULATION CONTINUED

Quadrature PSK

- 45° = 11
- 135° = 10
- 225° = 01
- 315° = 00

00, 01, 10, 11
MODULATION CONTINUED
MODULATION CONTINUED
CODING

• Form of Forward Error Correction
• Expressed in x/y format
 • X = Number of Real Data Bits
 • Y = Total Number of Bits Sent
 • Difference equals number of repeated bits
• Current Rates – 1/2, 2/3, 3/4, 5/6
MODULATION CODING SCHEME (MCS)

- Uses Index numbers - .11ac is 0-9
 - Each index number represents
 - Modulation – BPSK, QPSK or XX-QAM
 - Coding rate

<table>
<thead>
<tr>
<th>Spatial Streams</th>
<th>Modulation & Coding</th>
<th>Data Rate (20MHz)</th>
<th>Data Rate (40MHz)</th>
<th>VHT MCS Index</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>GI = 800ns</td>
<td>GI = 400ns</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>BPSK 1/2</td>
<td>6.5</td>
<td>7.2</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>QPSK 1/2</td>
<td>13</td>
<td>14.4</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>QPSK 3/4</td>
<td>19.5</td>
<td>21.7</td>
<td>2</td>
</tr>
<tr>
<td>1</td>
<td>16-QAM 1/2</td>
<td>26</td>
<td>28.9</td>
<td>3</td>
</tr>
<tr>
<td>1</td>
<td>16-QAM 3/4</td>
<td>39</td>
<td>43.3</td>
<td>4</td>
</tr>
<tr>
<td>1</td>
<td>64-QAM 2/3</td>
<td>52</td>
<td>57.8</td>
<td>5</td>
</tr>
<tr>
<td>1</td>
<td>64-QAM 3/4</td>
<td>58.5</td>
<td>65</td>
<td>6</td>
</tr>
<tr>
<td>1</td>
<td>64-QAM 5/6</td>
<td>65</td>
<td>72.2</td>
<td>7</td>
</tr>
<tr>
<td>1</td>
<td>256-QAM 3/4</td>
<td>78</td>
<td>86.7</td>
<td>8</td>
</tr>
<tr>
<td>1</td>
<td>256-QAM 5/6</td>
<td>n/a</td>
<td>n/a</td>
<td>9</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Spatial Streams</th>
<th>Modulation & Coding</th>
<th>Data Rate (80MHz)</th>
<th>Data Rate (160MHz)</th>
<th>VHT MCS Index</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>GI = 800ns</td>
<td>GI = 400ns</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>BPSK 1/2</td>
<td>29.3</td>
<td>32.5</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>QPSK 1/2</td>
<td>58.5</td>
<td>65</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>QPSK 3/4</td>
<td>87.8</td>
<td>97.5</td>
<td>2</td>
</tr>
<tr>
<td>1</td>
<td>16-QAM 1/2</td>
<td>117</td>
<td>130</td>
<td>3</td>
</tr>
<tr>
<td>1</td>
<td>16-QAM 3/4</td>
<td>175.5</td>
<td>195</td>
<td>4</td>
</tr>
<tr>
<td>1</td>
<td>64-QAM 2/3</td>
<td>234</td>
<td>260</td>
<td>5</td>
</tr>
<tr>
<td>1</td>
<td>64-QAM 3/4</td>
<td>263.3</td>
<td>292.5</td>
<td>6</td>
</tr>
<tr>
<td>1</td>
<td>64-QAM 5/6</td>
<td>292.5</td>
<td>325</td>
<td>7</td>
</tr>
<tr>
<td>1</td>
<td>256-QAM 3/4</td>
<td>351</td>
<td>390</td>
<td>8</td>
</tr>
<tr>
<td>1</td>
<td>256-QAM 5/6</td>
<td>390</td>
<td>433.3</td>
<td>9</td>
</tr>
<tr>
<td>HT MCS Index</td>
<td>Spatial Streams</td>
<td>Modulation & Coding</td>
<td>Data Rate (GI = 800ns) 20MHz</td>
<td>Data Rate (GI = 400ns) 20MHz</td>
</tr>
<tr>
<td>--------------</td>
<td>----------------</td>
<td>---------------------</td>
<td>-----------------------------</td>
<td>-----------------------------</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>BPSK 1/2</td>
<td>6.5</td>
<td>7.2</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>QPSK 1/2</td>
<td>13</td>
<td>14.4</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>QPSK 3/4</td>
<td>19.5</td>
<td>21.7</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>16-QAM 1/2</td>
<td>26</td>
<td>28.9</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>16-QAM 3/4</td>
<td>39</td>
<td>43.3</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>64-QAM 2/3</td>
<td>52</td>
<td>57.8</td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>64-QAM 3/4</td>
<td>58.5</td>
<td>65</td>
</tr>
<tr>
<td>7</td>
<td>1</td>
<td>64-QAM 5/6</td>
<td>65</td>
<td>72.2</td>
</tr>
<tr>
<td>8</td>
<td>2</td>
<td>BPSK 1/2</td>
<td>n/a</td>
<td>n/a</td>
</tr>
<tr>
<td>9</td>
<td>2</td>
<td>QPSK 1/2</td>
<td>13</td>
<td>14.4</td>
</tr>
<tr>
<td>10</td>
<td>2</td>
<td>QPSK 3/4</td>
<td>26</td>
<td>28.9</td>
</tr>
<tr>
<td>11</td>
<td>2</td>
<td>16-QAM 1/2</td>
<td>39</td>
<td>43.3</td>
</tr>
<tr>
<td>12</td>
<td>2</td>
<td>16-QAM 3/4</td>
<td>52</td>
<td>57.8</td>
</tr>
<tr>
<td>13</td>
<td>2</td>
<td>64-QAM 2/3</td>
<td>104</td>
<td>115.6</td>
</tr>
<tr>
<td>14</td>
<td>2</td>
<td>64-QAM 3/4</td>
<td>117</td>
<td>130.3</td>
</tr>
<tr>
<td>15</td>
<td>2</td>
<td>64-QAM 5/6</td>
<td>130</td>
<td>144.4</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>256-QAM 3/4</td>
<td>156</td>
<td>173.3</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>256-QAM 5/6</td>
<td>n/a</td>
<td>n/a</td>
</tr>
</tbody>
</table>
SERVICE SET IDENTIFIER - SSID

• 2 Levels Used
 • Extended Service Set Identifier – ESSID
 • Common Name used to identify the network as a unit – “Corp” or “Guest”
 • Transmitted by every Access Point in the network
 • Basic Service Set Identifier – BSSID
 • Used to identify the individual Access Point (radio) and SSID within its programming
 • Format is MAC address – Ex. aa:12:cc:34:ee:56
 • Each and every BSSID has its own set of Management and Control Frames
 • All Management and Control Frames are:
 • Sent using the lowest Basic (a.k.a. Mandatory) Data Rate
 • Sent using 20MHz wide channels for backwards compatibility
CONTENTION FREE PERIODS

- Used to allow channel bonding in the medium
- Initiated by the Access Point
- Sent using 20MHz wide channel
 - Part of the Management and Control Frame set
 - Attempt to avoid collisions with older clients that can’t Channel Bond
KEY FACTORS THAT AFFECT PERFORMANCE

• Signal to Noise Ratio (SNR)
• Overlapping Basic Service Sets (OBSS)
• Client Device Capabilities
• Greenfield versus Mixed
• Other Forces
SIGNAL TO NOISE RATIO

• Higher the number – better the signal quality

• Affected by
 • Attenuation
 • Distance
 • Interference
 • Noise floor

• Manufacturers are using derivatives / calculations – “Air Quality”, “Link Quality”
MCS Value Achieved by Clients at Various Signal to Noise Ratio Levels (SNR)

<table>
<thead>
<tr>
<th>Protocol</th>
<th>Channel</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>802.11b</td>
<td>20MHz</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>MCS 0</td>
<td>MCS 0</td>
<td>MCS 0</td>
<td>MCS 1</td>
<td>MCS 1</td>
<td>MCS 1</td>
<td>MCS 1</td>
</tr>
<tr>
<td>802.11a/g</td>
<td>20MHz</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>MCS 0</td>
<td>MCS 0</td>
<td>MCS 0</td>
<td>MCS 1</td>
<td>MCS 1</td>
<td>MCS 1</td>
<td>MCS 1</td>
</tr>
<tr>
<td>802.11n</td>
<td>20MHz</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>MCS 0</td>
<td>MCS 0</td>
<td>MCS 0</td>
<td>MCS 1</td>
<td>MCS 1</td>
<td>MCS 1</td>
<td>MCS 1</td>
</tr>
<tr>
<td>802.11n</td>
<td>40MHz</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>MCS 0</td>
<td>MCS 0</td>
<td>MCS 0</td>
<td>MCS 1</td>
<td>MCS 1</td>
<td>MCS 1</td>
<td>MCS 1</td>
</tr>
<tr>
<td>802.11ac</td>
<td>20MHz</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>MCS 0</td>
<td>MCS 0</td>
<td>MCS 0</td>
<td>MCS 1</td>
<td>MCS 1</td>
<td>MCS 1</td>
<td>MCS 1</td>
</tr>
<tr>
<td>802.11ac</td>
<td>80MHz</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>MCS 0</td>
<td>MCS 0</td>
<td>MCS 0</td>
<td>MCS 1</td>
<td>MCS 1</td>
<td>MCS 1</td>
<td>MCS 1</td>
</tr>
<tr>
<td>802.11ac</td>
<td>160MHz</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>MCS 0</td>
<td>MCS 0</td>
<td>MCS 0</td>
<td>MCS 1</td>
<td>MCS 1</td>
<td>MCS 1</td>
<td>MCS 1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SNR in dB</th>
</tr>
</thead>
<tbody>
<tr>
<td>11</td>
</tr>
<tr>
<td>802.11b</td>
</tr>
<tr>
<td>802.11a/g</td>
</tr>
<tr>
<td>802.11n</td>
</tr>
<tr>
<td>802.11ac</td>
</tr>
<tr>
<td>802.11ac</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SNR in dB</th>
</tr>
</thead>
<tbody>
<tr>
<td>21</td>
</tr>
<tr>
<td>802.11b</td>
</tr>
<tr>
<td>802.11a/g</td>
</tr>
<tr>
<td>802.11n</td>
</tr>
<tr>
<td>802.11ac</td>
</tr>
</tbody>
</table>

Modulation Key
- None = Grey
- 8PSK = Red
- QPSK = Orange
- 16-QAM = Yellow
- 64-QAM = Blue
- 256-QAM = Green

802.11 Type Key
- 802.11b
- 802.11a/g
- 802.11n
- 802.11ac
OVERLAPPING BASIC SERVICE SETS (OBSS)

• What is it?
 • When AP density is high
 • When number of access points exceed available channels within “earshot”
 • By-product is CCI & ACI
 • Further exacerbated with channel bonding
 • Can occur due to client device location as well
High Density Design = Many Users / High Throughput
Using 20MHz or 40MHz (with DFS) Channels
Using 80MHz Wide (with DFS) Channels
Duty Cycle / Airtime / Utilization

- How long any one TX is taking up the RF
- TX from attenuated devices “take longer” than one closer to the RX
- When channel bonding, increase utilization as you decrease channel diversity
- Remember this is for both Access Points and Client devices
- More “cars on the road” means “less overall speed”
GREENFIELD VERSUS MIXED

• Definition – All or Some
• Mixed environments are most common, even in Enterprise
• Can’t control Guest / Visiting Client
• Sometimes little control over Corporate Owned
 • Healthcare
 • Where cost is king
OUTSIDE FORCES

• Client Devices
 • Hardware support for Channels and Capabilities (Ex. MU-MIMO)
 • Driver Challenges

• Neighboring Networks

• Manufacturer options
THE REAL DEAL

• Depending on Environment use of Channel Bonding will be limited
 • 20MHz – always
 • 40MHz – sometimes depending on AP density
 • 80MHz+ - not likely

• Designs are moving to more users in condensed areas
 • Increases OBSS likelihood

• Can’t control all devices in the environment
 • Capabilities Need to be equal
 • Hardware and Driver support
THE CLAIMS

• Deliver increased scale and coverage.
 - Coverage isn’t increased
 - Depends on what they mean by “scale”

• Offers a significant boost in performance.
 - Compared to .11a/b/g
 - Compared .11n, not so much

• Offers up to 7Gbps of throughput.
 - Only in very few cases
THE CLAIMS

• Can handle up to XXXX users per radio.
 - ✔ Newer capabilities and hardware have increased capacity
 - ✗ Efficiency is hampered with large numbers of devices

• MU-MIMO can talk to multiple clients simultaneously.
 - ✗ Only in Downlink Direction
 - ✗ Not all Manufacturers support

• To deploy you need multigigabit links to the Access Points.
 - ✗ Half-duplex medium and limited wireless speeds even with .11ac
I WANT YOU TO FIRE DILBERT FOR INSULTING MY WIFE IN HIS SLIDE DECK.

THE PRESENTATION WAS ABOUT WI-FI, NOT YOUR WIFE.
MY CONTACT INFO

rsteiner@airopath.com

@rick_wifi_guy

https://www.linkedin.com/in/richard-rick-steiner-5874566

https://rickwifiguy.wordpress.com

www.airopath.com