Telecommunication Grounding & Bonding

Anthony I Madroño RCDD DCDC HP-AIS CAP-RS REE MBA Managing Director – ISI Corp Member - IEEE Lifetime Member – IIEE Philippines BICSI Chair

Codes and Standard References

- ANSI J-STD 607B
- ANSI/NECA/BICSI 607:2011
- ANSI/TIA 607B: 2011
- BICSI TDMM 13th Edition:2014
- BS 7430:2011
- IEEE 1100:2005
- IEEE 81:2012
- ISO/IEC 30129:10.2015
- NFPA 70:2014 (NEC)
- Motorola R56:2005

Why the need for Grounding and Bonding

- Equipment Protection
- Satisfy Warranty Requirement
- System Performance
- Service Protection
- Personnel Safety (code requirement – NEC/CSA/BS/IEC)

Case: Two Ground Reference Points

Case: Single Equipotential Plane

Building V = 0 Volts Equipment A Equipment B Difference I = 2A $Z = 10 \Omega$ Earth **Effect of Single-point Reference of all Equipment** (0 volts Difference) 11

1. Grounding & Bonding Components

Main Telecommunication Grounding Busbar (TMGBB)

Telecommunication Grounding Busbar (TGBB)

2-Hole Long Barrel Terminal Lugs & Compression Type Connectors

1. Grounding & Bonding Components

Exothermic connection & a 2-hole lug connection to a busbar

2-Hole Terminal Lug

Trimmed Insulation from a conductor

1. Grounding Rods Plates & Pipes

Copper Ground Rod

1. Grounding Rods Plates & Pipes

Building Frame & Water Pipe Copper Plate Grounding Bonding

2. Preparations - Crimping & Exothermic Welding

Crimping a conductor in the barrel of the lug

Finished Barrel with 3crimps

Mold being locked and disk inserted

Example of a mold for Bicsi an exothermic weld

2. Preparation - Exothermic Welding & Busbar

Pouring Weld metal powder into a mold

Removing oxidation from the grounding busbar

Igniting the accelerant

Applying an antioxidant to the cleaned area of the **Bicsi** grounding busbar

2. Preparation - Busbar Lug Connection

3. Sample - Bonding Connection with Rack Cabinet Door System

Illustration of a bond connection from a cabinet to the cabinet door & side panel

3. Sample - Mechanical & Exothermic Bonding Connection

Example of Exothermic Welding

Example of Mechanical Connector Shall Be UL listed for the purpose - Always

3. Sample - Mechanical Bonding on Trays

Example of 2-hole lugs and a ground terminal block & Clips

3. Sample - Tray Bonding Routing & Radius

Illustration of a connection point to a rack from a TECB

Example of a TEBC routed on a cable tray bend radius shall not be less than 200mm & 90 degrees minimum

3. Sample - Rack Bonding Configurations

3. Sample - Rack Bonding Configuration

equipment bonding

4. Set Up - TGBB Grounding in an IT Room

TGBB should be closest possible to the Electrical Panels – Bond Everything!!

4. Set up - Components of grounding & Bonding System

Supplemental bonding grid, or signal reference grid, found in raised-floor systems

Main components of the telecommunications bonding and grounding system

4. Set up - Components of grounding & Bonding System ISO/IEC Referenced

Note that on the ISO/IEC 30129 (released Oct 2015) **Standard for Information Technology**: **Telecommunications Bonding Networks for Buildings and other** structures – GEs (Also known as Bonding Equalizer) must be made every other 3 floors and the top floor.

5. Sizing Up all Conductors – Main Bonding Conductors & Bonding Jumpers

TIA 607-B & ISO/IEC 30129

Maximum TMGBB (PBB) to TGBB (SBB)	Conductor cross-sectional area (minimum)	
Length (L) meters (feet)	Nominal Int'l Conductor (mm2)	Nominal AWG Conductor
L ≤ 4m (13ft)	16	6
4 < L ≤ 6m (14 – 20ft)	25	4
6 < L ≤ 8m (21 – 26ft)	35	3
8 < L ≤ 10m (27 – 33ft)	35	2
10 < L ≤ 13m (34 – 41ft)	50	1
13 < L ≤ 16m (42 – 52ft)	60	1/0
16 < L ≤ 20m (53 – 66ft)	70	2/0
20 < L ≤ 26m (67 – 84ft)	95	3/0
26 < L ≤ 32m (85 – 105ft)	120	4/0
32 < L ≤ 38m (106 – 125ft)	150	250 kcmil
38 < L ≤ 46m (126 – 150ft)	150	300 kcmil
46 < L ≤ 53m (151 – 175ft)	185	350 kcmil
53 < L ≤ 76m (176 – 250ft)	250	500 kcmil
76 < L ≤ 91m (251 – 300ft)	300	600 kcmil
Greater than 91m (301ft)	400	750kcmil

5. Sizing Up all Conductors – Bonding Conductors or Bonding Jumpers

Main incoming circuit- breaker rating (Amps)	Minimum number of Earth Electrodes	Minimum size of main Earth Conductor (mm²)
60/100	1	16
200	1	50
300	1	50
400	1	70
500	2	70
600	2	70
800	2	70
1000	2	70
1600	2	70
2000	2	150
2500	2	150

5. Sizing Up all Conductors – Bonding Conductors or Bonding Jumpers

Cross sectional area of phase and neutral conductors (S) (mm²)	Minimum cross- sectional area of Earth conductors [see note 1] (mm²)	Minimum cross- sectional area of equipotential bonding conductors (mm²)
S <= 16	S (not less than 1.5 see note 2)	S / 2 (not less than 4 or 6, see note 3)
16 < S <= 35	16	10
S > 35	S/2	S / 4 (but not exceeding 25)

A5(j) Sizing of Earth Conductors and Equipotential Bonding Conductors

[from table 54.7 of BS 7671]

5. Sample Conductor – Main Grounding Electrode Conductor

Must Be Exothermic Weld Grounding Electrode Conductor

5. How to do It : Main Grounding Electrode - Position

5. How to do It : Main Grounding Electrode - Depth

5. How to do lt : Main Grounding Electrode - Spacing

DEWA = 6 meters apart Minimum

NPFA 70 = equal to the length of the Rod – minimum, with recommended spacing of <u>twice</u> <u>the length</u> of the Rod

6. Testing – What numbers to look at?

Typical Ground Resistance Requirements – Which one to Follow!

Type "A" Sites: (One Rod or Two Rods Grounding Systems)

NFPA 70:2017 (NEC) = 25 Ohms or use two rods or more

Type "B" Sites: (Two or more Rods Grounding Systems in ring/radial or special set up)

• IEEE Standard 1100

- = 1 Ohm (125Vac L-G) USA
- = 0.8 Ohm (277Vac L-G) USA
- = 0.8 Ohm (347Vac L-G) Canada
- Motorola Standard R56
- Telecommunications Cos
- GE & Other Medical Systems
- ANSI/BICSI 002:2014
- DEWA Dubai
- TEWR Abu Dhabi

- = 10 Ohms (Design Goal 5 Ohms Recommended)
- = 3 to 5 Ohms, Regional TELCOs Less than 10 Ohms
- = 2 Ohms
- = 5 Ohms Maximum, but recommends
 - 3 Ohms for Class F2 & F3 DC, and
 - 1 Ohm for Class F4 Data Centers Design

= 1 Ohm (Section 5.2.4 – 1997Ed) = 10 Ohms (Section 6.2.1a – 2014ed)

Reference: IEEE 81:2012 = Guide for Measuring Earth Resistivity, Ground Impedance, and Earth Surface Potentials of a Grounding System

How to Space the Current Probe from Electrode to be Tested?..... How Far!

On a Single Electrode

- * Minimum Distance = 5 Times the Length of the Rod
- * Ideal? = 10 Times the Length of the Rod

@ 10FT Rod, Current Probe = 100Feet Away

Note: In numerous test on soil with uniform soil resistivity it has been found that ground's resistance is at around 62% (some documents says at 61.8%) away from the rod under test!! Hence Fall of Potential Method is also known as 62% Method of Ground Resistance Testing.

Method 1: measurement using dedicated Earth Electrode tester

11 -

Abu Dhabi – The Electrical Wiring Authority Manual (3rd Ed – 2014) Appendix A19(a)

Distance from Y to ground electrode

6. Testing - Option 2 = Clamp-on Testing

Clamp-on Ground Resistance Meter

- * Does Not Require Disconnecting Equipment
- * Measures Current on the Ground to get Ground Resistance,
- * Referenced with Pole Butt Proper and consistent resistance, and
- * Very Convenient, Quick & Easy

However, it may read Ground Loops instead of Ground Resistance!!

6. Testing - Option 2 = Clamp-on Testing

6. Testing - Option 2 = Clamp-on Testing

Manual (3rd Ed – 2014) Appendix A19(a)

7. Bond it Together - Follow the Codes

NFPA 70:2017 Art 800 Communication Circuits Section: 800.100(D)

Bonding of Electrodes. A bonding jumper not smaller than **6AWG (14mm2)** copper or equivalent shall be connected between the communications grounding electrode and power grounding electrode system at the building or structure served where separate electrodes are used.

7. The Key? – Just Bond It Together!

8. Area with Poor Soil Conductivity Option 1: Electrolytic Grounding Rod Systems

- **Commercially available electrolytic ground rods should be considered.** (MIL-HDBK-419A Volume I, and UL 467-2013)
- These are in straight or L-shaped versions. Generally constructed of 54 mm (2.125 in.) dia. hollow copper pipe and filled with a mixture of non-hazardous natural earth salts.
- Holes on the pipe allow moisture to be hygroscopically extracted from the air into the salt within the pipe, hence forming conductive electrolytes and <u>leach out</u> from the pipe into the soil, thus improving soil conductivity.
- Electrolytic ground rods are inserted into a pre-drilled hole, or in the case of L-shaped rods, placed into a trench at least 762 mm (30 in.) deep, and encased in a grounding electrode encasement material.

Option 1: Electrolytic Grounding Rod Systems

8. Area with Poor Soil Conductivity Option 2: Copper Plates Grounding Systems

Requirements and use of ground plate electrodes are as follows:

- Ground Plates shall be UL listed using copper or copper-clad steel plates.
- It shall expose not less than 0.37 m2 (2 sq.ft.) of surface to exterior soil (MIL-HDBK-419A, NFPA 70-2017, & NFPA 780-2017).
- It shall have a minimum thickness of 1.5 mm (0.06 in.) (MIL-HDBK-419A, & NFPA 70-2017).
- Ground plates shall be free of paint or other nonconductive coatings (NFPA 70-2017, & NFPA 780-2017).
- It shall be buried not less than 762 mm (30 in.) below the surface of the earth (NFPA 70-2017).
- Where practical, a ground plate shall be embedded below permanent moisture level (BS 7430:1998, & NFPA 70-2017).
- Ground plates should be installed vertically to allow for minimum excavation and better contact with the soil when backfilling (BS 7430:1998 and IEEE STD 142-1991)

8. Area with Poor Soil Conductivity Option 2: Copper Plates Grounding Systems

Option 2: Copper Plates Grounding Systems

8. Area with Poor Soil Conductivity Option 3: Ufer Grounding Systems

- Though concrete-encased electrodes (also known as Ufer electrodes, or foundation earth electrodes - named after Herbert G. Ufer,), <u>they should</u> <u>be used in new construction as a method of supplementing the grounding</u> <u>electrode system (IEC 62305-3)</u>.
- It enhance the effectiveness of the grounding electrode system in two ways:
 - * the concrete absorbs and retains moisture from the surrounding soil, and
 - * the concrete provides a much larger surface area in direct contact with the surrounding soil. (This is especially helpful at sites with limited area for installing a grounding electrode system).
- See IEEE STD 142-1991 section 4.2.3, and the International Association of Electrical Inspectors publication, Soares Book on Grounding and Bonding, 9th Edition, for added information.

8. Area with Poor Soil Conductivity Option 3: Ufer Grounding Systems

Requirements for a concrete encased electrode, if used, are listed as follows (IEC 62305-3, NFPA 70-2017, and NFPA 780-2017):

- Concrete-encased electrodes shall be encased by at least 51 mm (2 in.) of concrete, located within and near the bottom of a concrete foundation or footing that is in direct contact with the earth (or ground).
- It shall be at least 6.1 m (20 ft.) of bare copper conductor not smaller than 25 mm2 (#4 AWG) or at least 6.1 m (20 ft.) of one or more bare or zinc galvanized or other conductive coated steel reinforcing bars, or rods at least 12.7 mm (0.5 in.) in diameter.
- And, shall be bonded to any other grounding electrode system at the site as per NFPA 70-2017.

Option 3: Ufer Grounding Systems

Option 3: Ufer Grounding Systems

9. Reading References for Grounding & Bonding Specially on Areas with Poor Conductivity Soil Conditions

- **BS 7430:2011** (Code of Practice for Protective Earthing of Electrical Installations)
- **ISO/IEC 62305-3** (Protection of Structure Against Lightning)
- **IEEE 142:2007** (Green Book Grounding of Industrial & Commercial Power Systems)
- **Motorola R56** (Standards & Guidelines for Communication Sites)
- MIL-HDBK-419A (Military Handbook Grounding, Bonding & Shielding for Electronic Equipment & Facilities)
- MIL-UFC-3-580-01:2016 (Military Unified Facility Command Telecommunications Interior Infrastructure Planning & Design)
- MIL-I3A Standard 2010
- (Military Technical Criteria for the Installation Information Infrastructure & Architecture)

10. Where to Buy Codes and Manuals mentioned

www.bicsi.org

www.iso.org

www.global.ihs.com

www.tiaonline.org

And California

Telecommunication Grounding & Bonding

Thanks a lot

Anthony I Madroño

Contact: +63.899.4278 & 80 +63.917.540.0842

Email: tony.isicorp@gmail.com

