How to Increase Data Center Efficiency

Shivani Shukla Potkar
Product Marketing Manager – Pentair Electronics Protection
High cooling efficiency & and reduced power consumption

... enhances the balance between operational reliability and cost-effectiveness!
The speed of technological change has created significant new challenges for the data center

- Higher demand for processing capacity
- Increase efficiency
- Reduce operational costs
- Higher processing power on smaller physical footprint
- Multivendor systems create complexity
- Security threats emerge daily

Pentair helps you with Schroff modular data center solutions to meet your goals with an systematic approach!
EFFECT of lower efficiency

Data Center challenges affect Efficiency ...

- **AVAILABILITY**
- **REDUNDANCY**
- **SECURITY**
Measuring Data Center Efficiency: PUE & DCiE

- **PUE** – Power Usage Effectiveness
 - Equals Total Utility Power / IT Power
 - The lower the number the better

- **DCiE** – Data Center infrastructure Efficiency
 - Equals IT Power / Total Utility Power
 - Shown as XX% -- high XX% = more efficient

- **DCiE is the inverse of PUE**
 - See chart

- **PUE and DCiE are measurements that help to easily understand how Data Center efficiency**

<table>
<thead>
<tr>
<th>PUE</th>
<th>DCiE</th>
<th>Level of Efficiency</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.0</td>
<td>33%</td>
<td>Very Inefficient</td>
</tr>
<tr>
<td>2.5</td>
<td>40%</td>
<td>Inefficient</td>
</tr>
<tr>
<td>2.0</td>
<td>50%</td>
<td>Average</td>
</tr>
<tr>
<td>1.5</td>
<td>67%</td>
<td>Efficient</td>
</tr>
<tr>
<td>1.2</td>
<td>83%</td>
<td>Very Efficient</td>
</tr>
</tbody>
</table>

Thermal failure is root cause for 55% of all equipment failures
Looking at The Server cabinets First ...

• The main challenges are ...
 – air separation
 – blanking panels
 – cable management
 – static load
 – dimensions
 – accessories

• Different IT equipment needs to be supported!
How to make your server cabinets efficient?

• The server cabinet must ...
 – support your cooling concept
 – adapt to your environment
 – host and protect several generations of IT equipment
 – contain the cable management

• Example for a small change
 – the installation of cabinets painted light grey, 75% less lamps had to be installed for room lighting!

For every 18 degrees Fahrenheit (10 degrees Celsius) that internal cabinet temperatures rise above normal room temperature, the life expectancy of the enclosed electronics drops by 50 percent.

— Uptime Institute
Sealing your server cabinets is basic …

- Little changes have big effects …
 - close every open space of the cabinet
 - use air baffles with cut outs and brush strips for front<2>rear cabling
 - use 19” blanking panels, they are available in many dimensions
 - at any time!

- Don’t let cold and hot air mix up …
 - the difference of cold and hot air is crucial for the efficiency of your cooling system!
This leads to aisle containments ...

- **Containment is state of the art!**
 - preventing recirculation by separating cold and hot areas inside Data Centers
 - balancing temperatures inside the aisle in front of the cabinets

- **At least, cooling efficiency is to optimize “air management”!**
 - project example: due to the consequent separation of cold and hot areas we achieved 30% energy savings in a customer data center!
Containment - What needs to be considered?

- **Automatic aisle sliding doors**
 - pay attention to emergency exits

- **High transparent aisle covers**
 - the room lightning is not effected

- **side2side cooling**
 - use vertical front blanking panels with air guides to the sides

- **Integration of OEM cabinets**
 - use flexible aisle cover systems with universal profiles on top of the cabinets
Data center Cooling is a Key Function!

• **Statement**
 – 55% of equipment down time is caused by thermal failures, but
 – cooling is a significant part of the whole energy consumption of a data center!

• **So cooling must ...**
 – be aligned with the used IT Equipment
 – be adapted to the different conditions on site
 – fulfil the requirements on availability and redundancy
But, How to choose the right cooling system?

- Depending on heat load, inside and outside temperatures ...

<table>
<thead>
<tr>
<th>Natural convection</th>
<th>Free convection</th>
<th>Free convection</th>
<th>Forced air cooling</th>
<th>Forced air cooling</th>
<th>Forced air cooling</th>
<th>Cooling with coolant</th>
<th>Cooling with water</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>55 ... 65 dB (A)</td>
<td>34 ... 67 dB (A)</td>
<td>39 ... 71 dB (A)</td>
<td>55 ... 75 dB (A)</td>
<td>50 ... 81 dB (A)</td>
<td>50 ... 60 dB (A)</td>
</tr>
<tr>
<td>< 500 W</td>
<td>< 500 W to 800 W</td>
<td>< 500 W to 6000 W</td>
<td>< 2000 W</td>
<td>< 1500 W</td>
<td>< 2000 W</td>
<td>< 2600 W</td>
<td>< 40000 W</td>
</tr>
</tbody>
</table>

... various cooling solutions are available to ensure efficient cooling!
Data center cooling options

Air Cooling

<table>
<thead>
<tr>
<th>Cabinets</th>
<th>Cold Aisle Containment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Passive</td>
<td>Active</td>
</tr>
</tbody>
</table>

“traditional” ways of data center cooling

» Containment is state of the art!
Up to 30% energy savings are possible

» **However**: Heat load per cabinet is limited!

Air / Water Heat Exchanger

<table>
<thead>
<tr>
<th>Cabinets</th>
<th>In Row Cooling</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rear Door Cooler</td>
<td>Side Cooler</td>
</tr>
</tbody>
</table>

Warm air is moved through a water register. The water takes away the heat.

» Efficient cooling solutions
» Higher packing densities per rack possible
You will reach the BEST cooling efficiency with..

- **Air2water heat exchangers as InRow or InRackChillers!**

 InRow or InRackChillers increase cooling capacity inside the containment, because...

 - they are *where the heat is* and...
 - chilled water has a **4 times better heat transfer** than cold air

No CRAC unit required, no raised floor for cooling required
Water Cooling, what needs to be considered?

- Redundancy / availability
- Efficient adjustment
- Monitoring of critical parameters and alerting
- Service and maintenance
- Emergency cases / leakage
- Scalability
- Future needs / prospective cooling capacity
Cooling Capacity calculation

• Required data for a quick estimation ...
 – water entry temperature
 – required cold air temperature inside the containment
 – type of redundancy

• Real cooling capacity depends on ...
 – air and water volume
 – temperature difference
 – heat load
 – layout of the DC

29 kW cooling capacity at 22° air temperature with 12° water temperature
PUE / DCiE Activities & Energy Costs

- Hypothetical Data Center – Typical Hot Aisle / Cold Aisle
 - 40 Cabinets each with 10 kW IT load
 - Base PUE 2.75 (Traditional non-optimized Data Center)
 - Energy Costs $0.10 / kW Hour
 - Guideline to potential costs for implementing various “Green Activities”

<table>
<thead>
<tr>
<th>Activity</th>
<th>PUE Impact</th>
<th>Annual Power Usage</th>
<th>Annual Power Cost</th>
<th>Annual Power Savings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Base Hot Aisle / Cold Aisle</td>
<td>2.75</td>
<td>9,636,000</td>
<td>$963,600</td>
<td></td>
</tr>
<tr>
<td>Blanking Panels</td>
<td>2.73</td>
<td>9,565,920</td>
<td>$956,592</td>
<td>$7,008</td>
</tr>
<tr>
<td>Floor Brushes</td>
<td>2.70</td>
<td>9,460,800</td>
<td>$946,080</td>
<td>$17,520</td>
</tr>
<tr>
<td>Optimized Floor Tile Placement</td>
<td>2.65</td>
<td>9,285,600</td>
<td>$928,560</td>
<td>$35,040</td>
</tr>
<tr>
<td>CRAC / CRAH - Duct work</td>
<td>2.62</td>
<td>9,180,480</td>
<td>$918,048</td>
<td>$45,552</td>
</tr>
<tr>
<td>Drop Ceiling Plenum</td>
<td>2.58</td>
<td>9,040,320</td>
<td>$904,032</td>
<td>$59,568</td>
</tr>
<tr>
<td>Cabinet Layout - Optimized</td>
<td>2.55</td>
<td>8,935,200</td>
<td>$893,520</td>
<td>$70,080</td>
</tr>
<tr>
<td>Raised Floor - Optimized</td>
<td>2.50</td>
<td>8,760,000</td>
<td>$876,000</td>
<td>$87,600</td>
</tr>
<tr>
<td>Containment Cold Aisle</td>
<td>2.20</td>
<td>7,708,800</td>
<td>$770,880</td>
<td>$192,720</td>
</tr>
<tr>
<td>Containment - Hot Aisle</td>
<td>2.00</td>
<td>7,008,000</td>
<td>$700,800</td>
<td>$262,800</td>
</tr>
<tr>
<td>Containment - Chimney</td>
<td>2.00</td>
<td>7,008,000</td>
<td>$700,800</td>
<td>$262,800</td>
</tr>
<tr>
<td>Liquid Cooling - Stand alone Cabinets</td>
<td>1.75</td>
<td>6,132,000</td>
<td>$613,200</td>
<td>$350,400</td>
</tr>
<tr>
<td>In Row Cooling</td>
<td>1.50</td>
<td>5,256,000</td>
<td>$525,600</td>
<td>$438,000</td>
</tr>
</tbody>
</table>
Data Center Cooling Strategies Comparison

- Containment solutions provide lower investment with less complexity for less than 10KW cooling per cabinet (Raised floor is already present)

- For higher number of cabinets in a room with higher heat loss per cabinet – Need added cooling

<table>
<thead>
<tr>
<th>Strategy</th>
<th>Capital Costs</th>
<th>Raised Floor</th>
<th>Operating Costs/kW</th>
<th>Average Max kW per Cabinet</th>
<th>Reliability (Complexity)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Random (chaos)</td>
<td>$</td>
<td>Yes</td>
<td>Very High</td>
<td>2,500 kW</td>
<td>Very Low</td>
</tr>
<tr>
<td>Hot aisle / cold aisle</td>
<td>$</td>
<td>Yes</td>
<td>High</td>
<td>6 kW – 8 kW</td>
<td>Low</td>
</tr>
<tr>
<td>Chimney</td>
<td>$$</td>
<td>Yes or No</td>
<td>Moderate</td>
<td>10 kW – 20 kW</td>
<td>Medium</td>
</tr>
<tr>
<td>Containment (raised floor)</td>
<td>$$$</td>
<td>Yes</td>
<td>Moderate</td>
<td>15 kW – 20 kW</td>
<td>Medium / High</td>
</tr>
<tr>
<td>Closed-loop, ducting, hot and cold containment</td>
<td>$$$$</td>
<td>Yes or No</td>
<td>Low</td>
<td>10 kW – 20 kW</td>
<td>Medium</td>
</tr>
<tr>
<td>In-row cooling & containment (heat exchanger)</td>
<td>$$$$$</td>
<td>No</td>
<td>High</td>
<td>10 kW – 20 kW</td>
<td>High</td>
</tr>
<tr>
<td>Liquid cooling (heat exchanger)</td>
<td>$$$$</td>
<td>No</td>
<td>Low</td>
<td>20 kW – 40 kW</td>
<td>High</td>
</tr>
<tr>
<td>Chip-level liquid cooling</td>
<td>$$$$$$$</td>
<td>No</td>
<td>Very Low</td>
<td>+40 kW</td>
<td>Very High</td>
</tr>
</tbody>
</table>
SOME NEW TECHNOLOGIES

Electronic Locking Handles
PHYSICAL ACCESS CONTROL

Challenges

– Sabotage protection
– Avoid „failures by accident“

The cabinet is the last protection of unauthorized access!

Access control have to ...

– be always controllable
– manage control rights
– document access

Trend ~ High security cabinets within a Data Center
Electronic handles for SCHROFF Cabinets

- Integrated visualization of operating parameters and alerts over LED lights
- Standalone or IP addressable solutions
- Access documentation and control
- Sabotage and vandalism alerts
- HID or Mifare (optional) transponder technology

Short realization time as can be configured with the cabinet and delivered within 10 working days
OPERATIONAL STATUS INDICATION

After access authorization handle does not swing out and change status after a defined time frame.
Last But not the Least..

The 19“ cabinet is not just a Box!

- Challenges
 - Static Load
 - Structured Cable Management
 - Air Management
 - Dimensions
 - Security
 - Accessories

But we do not spend enough attention to the cabinet
Purpose of Cabinets

Protect and ensure uptime of the electronic equipment...

PROTECT
- Pollution
- Salt spray
- Vibrations
- EMC
- IP
- Temperature
- Vandalism
- Seismic
- Pressure

SUPPORT
- Usability
- Cable Management
- Power distribution
- Noise pollution
- Aesthetics
- Thermal management

MANAGE
- Temperature
- Humidity
- Cooling
- Smoke
- Access
- Condensation
- Air flow
CHALLENGES FACED TODAY

• SALES / PROJECT MANAGER:
 Why can I often not find a standard kit for my request?

• END-USER / CONSULTANT:
 Why I can not find the right solution fitting my requirements?

• PURCHASE / PROCUREMENT:
 Why cannot I have multiple choices to chose as per my budget?

SOLUTION:

➔ Modular standard parts and modification capabilities
 • Standard offering for common products
 • Project solutions for more specific specifications
 • Quoted and realized project solutions are documented in our records
PROJECT REFERENCES
BANK in FRANCE

Project Size 1700k€
- Brand/sales reputation and references
 - Reference installations for cabinets and PDUs
- Flexible standard platforms, that can be easily modified, therefore also best price performance
- Right cooperation partner to cover solutions besides the metal
- Sales, project management and operations capabilities and expertise
 - Proactive on customer requests
 - Technically best prototypes
CAR MAKER IN GERMANY

- Project Size 218k€

- Reference installations

- Flexible standard platforms, that can be easily modified, therefore also best price performance

- Sales, project management and operations capabilities and expertise
 - Proactive on customer requests
 - Technically best solution
 ➔ Competitor could not fulfill requirements

LHX20 footprint
ADVANCED PHYSICS DC

PROJECT DETAILS:

• Products: Air to water Heat Exchangers
• Date: 2013
• Industry: Seismic Measurements

CHALLENGES / PROJECT DESCRIPTION

• High Performance Computing (during measurements)
• Remote access required (No people onsite)
• Monitoring of cooling units, temperature, power, leakage
UNIVERSITY IN AUSTRIA

Cold Aisle Containment with White color cabinets
COLD AISLE CONTAINMENT IN NORWAY

- **92 Cabinets 47U 800x1000**
 - 60 Server Cabinets and 32 networking cabinets

- **3-phase iPDUs. 2 PDUs in each rack.**

- **7 cold aisle containments**
 - automatic doors and the other end of the aisles were permanently closed with frame + two sidepanels.
 - Prepared for overhead cabling.
 - Modified separating walls with 3 pcs Hoffman rubber grommet 3”
 - Customer installed their own card readers for the automatic doors.
ENERGY PROVIDER

PROJECT DETAILS:

- Products: Cold aisle containment
- Date: 2013
- Industry: Energy Provider

CHALLENGES / PROJECT DESCRIPTION

- Cold aisle containment cubes
- Defined server cabinet and networking cabinets, with special cable management
Put everything together ...

• Don’t let cold and hot air mix up!
• Use horizontal blanking panels!
• Use gaskets between cabinets and floor!
• Keep aisle doors closed!
• No cabinet doors inside the aisle!
• Use light-colored cabinets!
• Take everything out of the data center, which is not necessary, tables, chairs, packaging!
• Switch lights off automatically!
Some Results ...

• The difference between cold and hot air is crucial for the efficiency of your cooling system
 ➔ less power usage on the cooling system!

• The Heat transfer of water cooling is 4 times better than with air ➔
 less power usage on the cooling system!

• Containment balances temperatures inside the aisle ➔
 less power usage on the servers!

• Better cooling efficiency leads to less power consumption ➔
 but you can´t manage what you don´t measure!
Questions

ravikiran.gopalakrishna@pentair.com
shivani.shukla@pentair.com